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Abstract

We study three different aspects of computational biology: interacting particle sys-

tems, phylogenetic distance methods, and Markov Chain Monte Carlo.

Our study of interacting particle systems has two components: First, a Windows-

based simulator has been developed. It serves as a platform for many spatial biology

studies; for example, plasmid transfer in biofilms. Second, a specific ecological model of

multi-species cross-feeding has been studied using the simulator, where we have observed

spatial self-organization and pattern formation (particularly, spiral waves). A mathemat-

ical derivation, which is based on analysis of partial differential equations, explains the

phase-transitions observed in simulations.

Distance methods have been widely used to infer phylogenies (evolution trees among

different species) because they are fast and reasonably accurate. In this study, we have

proved that a popular distance method named neighbor-joining is in fact a special case

of least squares methods. The proof relates neighbor-joining to least squares statistics.

Hence it provides an explanation for the robustness and accuracy of neighbor-joining.

In an empirical study of MCMC, we investigate, through extensive simulations, how a

mixture of local and heavy-tailed proposals (a.k.a., “small world proposals”) can dramati-

cally increase the convergence rates of Markov chains that admit stationary measures that

are multi-modal. In the theoretical part of the study, we have proved, using techniques of

state decomposition and isoperimetric inequalities for log-concave distributions, that the

“small world proposals” turn a “slowly mixing” chain into a “rapidly mixing” chain.
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Preface

Mathematics is biology’s next microscope, only better;

biology is mathematics’ next physics, only better.

– J. E. Cohen (2004)

This dissertation contains three parts. Each part is self-contained and independent

of the others, although together they fit into a broad interdisciplinary framework: com-

putational biology, an interface where biology meets mathematics.

The first part is about interacting particle systems and consists of two chapters.

The first chapter is an announcement and description of a software package developed to

simulate interacting particle systems. In the second chapter we use the simulator to study

a multi-species crossing-feeding model of spatially distributed bacterial communities.

The second part is about phylogenetic distance methods. Particularly, in chapter

three, we prove that the popular cluster method named neighbor-joining is a special case

of least squares methods for inferring phylogenies using pair-wise distance matrices.

The third part is devoted to Markov chain Monte Carlo methods and it contains two

chapters. In chapter four, we show, through extensive simulations, how a simple modifica-

tion of a local proposal scheme can dramatically increase the performance of Metropolis-

Hastings sampler in a multi-modal space. Such a modification is motivated by the notion

of “small world networks” in that, by adding occasional heavy-tailed proposals onto the

local ones, a regular state space transforms into a “small world network.” Following the

same spirit, but in a more mathematical vein, we show in chapter five that the small-world

proposals turn a “slowly mixing chain” into a “rapidly mixing chain,” therefore putting

the simulation work in chapter four on a solid theoretical foundation.
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Part I

Interacting Particle Systems



3

Chapter 1

WinSSS: Stochastic Spatial Simulator

1.1 Introduction

WinSSS (http://www.webpages.uidaho.edu/∼krone) is a Windows-based program

for simulating stochastic spatial models that are individual based, have discrete spatial

structure and continuous time. This class of models is commonly referred to as inter-

acting particle systems or asynchronously updated probabilistic cellular automata. It is

ideally suited for developing insight and making predictions in spatial ecology. Ecological

examples can be found in Dieckmann et al. (2000) and Durrett and Levin (1994).

WinSSS features an elaborate graphical interface Figure 1.1 that allows one to chose

from various models, specify parameters such as birth/death rates and interaction strengths,

initialize with various starting configurations, view spatial dynamics as well as time series

and phase diagrams corresponding to spatial windows of various sizes. One can down-

load freely at the above URL the ready-to-run simulator, which includes pre-programmed

models and an HTML tutorial and help window. For those who would like to code their

own models, the C++ code can also be obtained.

The models in WinSSS include mechanisms for invasion of new territory and com-

petition for resources, head-to-head competition, pathogen spread, and various types of

successional dynamics. The HTML tutorial gives a brief introduction to these spatially

extended individual-based models and provides some references for further reading.

http://www.webpages.uidaho.edu/~krone
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Figure 1.1: The graphical interface of WinSSS

1.2 Model specification and parameters

To describe the models and simulations, we begin by noting that all the action takes

place on a 2-dimensional rectangular lattice (or grid) of sites, with a number of options for

the lattice size. Each site in the lattice can be in a number of different states (represented

as colors), depending on the specific model. One can think of a site as an individual or a

group of individuals, say in a habitat patch. The state of a given site can change to other

states at rates that depend in general on the configuration of states at “neighboring”

sites. These changes occur in continuous time and very quickly, so when watching the

simulation one typically observes sites changing all over the lattice. However, the changes

are asynchronous due to the continuous time nature of this (Markov) process. The way

to think of this is that every site has associated with it an (exponential) alarm clock with

rate that depends on the state at that site and the states at neighboring sites. The site

whose alarm rings first makes the appropriate change and all neighboring sites recalculate
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their rates. All the alarm clocks then start over and we wait for the next one to ring.

(We remark that the behavior of synchronously updated cellular automata can be similar

in some respects but very different in others. For example, updating all the sites at once

can lead to very rigid behavior that produces patterns not typically seen in biological

populations.)

Rates and interaction neighborhoods: There are two basic types of rates that allow

one to build most models of interest. These are “contact” and “spontaneous” rates.

Contact rates are for events that depend on the types at neighboring sites. For example,

a vacant site might become occupied by an offspring from a given species at a rate that is

proportional to the number of that species currently within some distance of the vacant

site. Contact rates can depend linearly or nonlinearly (e.g., a threshold event) on the states

at neighboring sites. There are several options for neighborhood size in the simulator.

Spontaneous rates are for events that occur independently of nearby sites. For example,

an individual might die or change its life stage after some random time through no effect

from other individuals.

Window size and time series: The overall lattice size can be selected from a number

of options ranging from 100× 100 up to 500× 500. The densities of the different species

appear, color-coded, in a separate window below the main simulation. These densities are

averages over a spatial window that the user chooses. They can be recorded in an accessible

file and used to obtain information about spatial length scales, as in Rand and Wilson

(1995). The user can also choose to watch the phase plane trajectories corresponding to

any two species. All of these observations of densities under various window sizes yield

perspective on the effects of randomness, correlations between sites at various distances,

and comparisons with the corresponding mass-action ordinary differential equations.
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1.3 Implementation

The models in WinSSS were developed using Visual C++. The graphical interface

employs OpenGL, the premier environment for developing portable, interactive 2D and

3D graphics applications.

To run WinSSS at reasonable speeds with lattice size 250×250 and above, a configu-

ration that is better than Pentium III 866 with 256M RAM is recommended. WinSSS has

been tested on Windows 2000 and Windows XP. Other operating systems in the Windows

family (e.g., Windows 98 and Window NT) should also work, but we have not tested them.
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Chapter 2

Spatial Self-Organization in a Cyclic

Resource-Species Model

2.1 Introduction

Mathematical models and observations from macroscopic ecology tell us that spatial

structure can have an enormous impact on the stability and diversity of interacting species.

Bacteria typically live in structured environments such as biofilms and soils and, as in the

case of biofilms, this structure is often largely the work of the bacteria themselves. In

addition to this spatial self-organization, microbial communities often play an active role

in helping to structure their geochemical environments.

Through their phenomenal diversity and adaptability, populations in microbial com-

munities find ways to cooperate to efficiently consume nutrients. Pelz et al. (1999) and

Bradshaw et al. (1994) give examples of such communities that, as biological units, are

robust and able to extract the maximal energetic benefit from available nutrients. This

cooperativity can work in concert with the afore-mentioned spatial organization.

We consider, as a representative of the class of spatially explicit cyclic resource-species

dynamics to be treated here, a microbial scenario in which a number of different bacterial

species coexist by cooperatively degrading a single nutrient in a succession of steps and

providing catalytic support for the primary degrader. This “catalytic support,” which

can be anything that facilitates the growth of the primary degrader, introduces feedback

into the system and provides a mechanism for spatial self-organization that can give rise



8

to coexistence of the species. Ours is a stochastic spatial model that is individual based

with discrete spatial structure and continuous time. Such models fall under the heading of

interacting particle systems or (asynchronously updated) probabilistic cellular automata.

Several factors make it a challenge to observe and understand the complex dynamics

in microbial communities, and this is where mathematical models can lead to significant

advances. Pelz et al. (1999) point out that, while metabolic pathways in individual mi-

croorganisms have been well studied since 1950, very little is known about multi-species

metabolic networks in bacterial communities, especially those found in nature. In addi-

tion, the spatio-temporal dynamics of microbial communities are notoriously difficult to

observe in any detail. This is partly due to the fact that most sampling protocols are in-

vasive and destructive. In the process of trying to extract crude estimates of the diversity

of a sample, the microscopic spatial structure is typically broken down (by homogeniz-

ing the sample) and one obtains instead only a spatially averaged view, often at a single

time point. Theoretical advances can play an important role in determining the types

of species interactions that lead to stable coexistence in a dynamic spatial setting, and

they can reveal signatures of such interactions that make them more easily recognizable.

For example, microscopic mechanisms sometimes lead to macroscopic patterns. While the

latter do not uniquely determine the former, they often suggest hypotheses that can be

tested in the lab.

The complex spatial nonlinear dynamics described by our model lead to interesting

properties. We are particularly concerned with conditions leading to persistence of the

species and the emergence of macroscopic spatio-temporal patterns from the microscopic

dynamics. Our simulations imply, for example, that for certain parameter settings the

species cannot coexist in the absence of spatial patterning. In these instances, coexis-

tence is enhanced by the self-organization of species (and their resources). The fact that

the resources can become patterned in such a process suggests potential mechanisms for

detecting spatial structure in microbial communities.
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2.2 The model

To motivate the model, let us imagine a collection of bacterial species that take part

in the successive degradation of a single nutrient. Assume that these bacterial players

live on a surface, say at a rock-water interface. The compound to be degraded adsorbs

onto the surface from the bulk fluid. One species (the primary degrader) is able to break

down this initial compound, taking in nutrients in the process. The product left over is

then further broken down by a second species, leaving a second product, and so on. This

sequence of steps is known as cross-feeding (e.g., Rosenzweig et al. 1994; Doebeli 2002).

The last species in the sequence we are modeling, after taking up its share of the nutrient,

then provides some form of catalytic support that enhances the growth of the first species.

This last step in the dynamics causes feedback and thus results in a cyclic progression of

states at each individual site. Such feedback mechanisms can arise in many ways. The last

species, for example, could remove a toxin produced by any one of the previous species

that would otherwise kill or inhibit the growth of the first species. Pelz et al. (1999)

discuss such a situation; they study a microbial consortium with four primary species that

are involved in carbon sharing and with one of the species scavenging toxic metabolites

that would kill the primary degrader if they were allowed to accumulate. While their

system does not constitute an exact match to our model, it gives a nice example of the

type of feedback we are modeling. As an alternative mechanism producing feedback, the

last species might simply create conditions under which the primary nutrient can adsorb

from the bulk fluid.

The above scenario is meant to provide some intuition for the model which follows.

There are many plausible systems that will provide the same dynamics. Our goal is to

understand how such spatially explicit cyclic systems behave and to give some indication

of the stability properties that make them likely to arise in the first place.

The stochastic spatial model introduced here is constructed on a 2-dimensional grid

(the square lattice Z2 or a finite sublattice), with periodic boundary conditions imposed
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when the space is finite. Each site of the lattice can be in any one of the following states:

R1, S1, R2, S2, . . . , RL, SL,

where L denotes the number of species, Si is the ith species, and Ri is the ith resource (or

stage in the decomposition of the initial compound). If a site is occupied by an individual

from species Si, this individual will reproduce at rate βi and deposit its (single) offspring

onto a randomly chosen neighboring site; only if the offspring lands on a site in state Ri

will it be viable. In such an event, the neighboring site will harbor the ith species on the

ith resource; this, however, will be denoted by Si instead of the bulkier Ri+Si (and we will

simply say that the site is occupied by the ith species, greatly simplifying our explanations

later). Thus, species Si consumes or degrades its “required resource” Ri to produce its

“product resource” Ri+1, the subscript being understood cyclically (i.e., RL+1 = R1). To

keep the model from having too many states, we assume that a species will disappear from

a site once it has converted its required resource to its product resource. (This could be

due to the removal of the species as a result of starvation or being out-competed by the

next species.) Thus, if a site is in state Si, it will change to state Ri+1 at constant rate δi.

In summary, a given site proceeds through a cyclic progression of states

R1 → S1 → R2 → S2 → · · · → RL → SL → R1 → · · · .

The transitions at such a site x come in two flavors:

Ri → Si at rate βifi(x), (2.1)

and

Si → Ri+1 at rate δi, (2.2)

where fi(x) denotes the fraction of species Si in some neighborhood about the site x. We
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will refer to βi and δi as the growth and death rates for species Si.

The above transitions and the cyclic nature of the progression of states at a given

site are illustrated in Figure 2.1. The sizes of the neighborhoods are important and will

be discussed below. We say the transition in (2.1) is “by contact” since it depends on the

states at nearby sites, requiring the presence of at least one Si near site x. The transition

in (2.2) is “spontaneous” in that it happens automatically, independently of the states at

the surrounding sites. We remark that since ours is a stochastic model, the word “rate”

always refers to exponential waiting times; i.e., some event happens at rate λ if the amount

of time it takes is an exponential random variable with rate λ (mean 1/λ). Figure 2.1

illustrates the transition rates at a given site. This is an example of what we call cyclic

local dynamics, our model being additionally characterized by the alternating of contact

and spontaneous transitions. Note that the model reduces to the basic contact process

(cf., Durrett 2002) in the case of one species and one resource (L = 1).

Figure 2.1: The cyclic local dynamics at site x for the model with 3 species and 3 resources.

To complete the description of the contact transition rates above, we must specify

the neighborhoods used to calculate the fraction of neighboring sites in a given state. In

our simulations, we treated each of the following three neighborhood types for a site x:

• 4 nearest neighbors: the four adjacent sites north, south, east, and west of the site

x;
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• 8 nearest neighbors: the sites in the 3× 3 box centered at x (except for x) made up

of the four sites above plus the four diagonally adjacent sites;

• 24 neighbors: the sites in the 5× 5 box centered at x (except for x).

Otherwise put, the 4 nearest neighbors are the sites within L1 distance one of x (i.e.,

the von Neumann neighborhood of x), the 8 nearest neighbors are the sites within L∞

distance one of x (i.e., the Moore neighborhood of x), and 24 neighbors correspond to the

sites within L∞ distance two of x.

Now that the local dynamics are specified, the goal is to understand how these trans-

late into global behavior by keeping track of the entire configuration of states on the

spatial grid. Such stochastic spatial models are sometimes called interacting particle sys-

tems (IPS) or (asynchronously-updated) probabilistic cellular automata (CA). While the

latter term is more familiar to biologists, some confusion can occur if one fails to dis-

tinguish between the different types of CA model. Hereafter, we will use the term IPS

model.

2.3 Particle system behavior

In this section, we first characterize the different patterns and behaviors of our model.

Then we investigate the corresponding parameter regions that yield these different behav-

iors through extensive simulations of the particle system.

The model exhibits configurations that can be classified by four major patterns:

frozen, synchronous waves, asynchronous waves, and mixing. These patterns are shown

in Figure 2.2 and are understood to refer to patterns in a simulation that persist for a

long time. A frozen pattern results when all the species die out, leaving only resources;

once all species are absent, the configuration can no longer change. The other three

types of patterns involve survival of all species. Synchronous waves include spiral waves

and traveling waves that are spatially large (compared to the grid size) and temporally
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synchronized. Asynchronous waves consist of spiral waves and traveling waves that are

not large (compared to the grid size) and temporally unsynchronized. Mixing refers to

spatially homogeneous configurations and corresponds to species survival in the absence

of spatial patterning. We remark that the classification of a given simulation run as one

of the four patterns was done “by eye.” Also, the difference between synchronous and

asynchronous waves is one of degree, with asynchronous waves amounting to synchronous

waves that exist only on small length scales.

Figure 2.2: Four different patterns for an 8-state version of the model. Top left: frozen;
Top right: synchronous waves; Bottom left: asynchronous waves; Bottom right: mixing.
The colors designate species (green, red, light blue, blue) and resources (yellow, gray,
purple, brown). For example, yellow represents the product resource of the green species
and the required resource of the red species.

All simulations were run on a lattice of size 300×300. Each run starts with a random

initial configuration and data are collected after 1000 units of time, where one “unit of

time” corresponds to an average of 90, 000 (i.e., 300 · 300) possible random events: on
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average, each site updates once during a unit of time. To fully investigate the parameter

space for this model is difficult, if not impossible, because of the large number of parameters

(2L different parameters when there are L species). However, we can obtain important

information by investigating two special cases. One is the symmetric case in which all

species growth rates are equal and all death rates equal 1. The other is an asymmetric

case in which we allow the growth rate of the first species to differ from the (majority)

common growth rate of all other species. These cases are discussed in more detail below.

The afore-mentioned patterns should not be confused with short-lived transient pat-

terns such as traveling waves of infection in a contact process or epidemic model. Once

such a wave passes, the system relaxes to a steady state distribution that does not ac-

commodate these waves. In our cyclic resource-species model, the patterns we refer to are

recurring. Of course, any frozen state is absorbing (in the sense that it can never change)

and as soon as one species dies the whole system is doomed to freeze. Since we are using a

finite lattice, eventually the process will freeze, but this will take a very long time on our

300× 300 lattice–much longer than the 1000 units of time on which our simulation results

are based. The patterns we are referring to appear in simulations over the course of a

reasonable length of time (from a few seconds to many hours). Thus, strictly speaking,

they refer to quasi-stationary distributions for the particle system on a finite lattice. If

one prefers to think of the particle system on an infinite lattice, these quasi-stationary

states look like pieces of the stationary distribution for the infinite system.

2.3.1 Symmetric case

The results of the simulations in the symmetric case are summarized in Figure 2.3.

We treated four different values for the number of states: N = 2L = 4, 6, 8, 10. For each

of these, we considered three neighborhood sizes: r = 4, 8, 24. Once these two parameters

were chosen, we ran simulations for a large range of values of the common growth rate β

for 1000 units of time.
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Figure 2.3: (Symmetric Case) Simulation results for IPS model with all species having the
same growth rate β, and all death rates δ = 1. The horizontal axis denotes the common
growth rate β (sampled at integer values) and the vertical axis has labels of the form
N : r, where N = 2L denotes the total number of states and r denotes the neighborhood
size. The outcome reported for a given values of β and N : r corresponds to the majority
outcome from 20 runs starting with different random configurations.
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Growth rate. First consider the simulation results as a function of β, for fixed values

of N and r. Small values of β lead to frozen patterns. As β increases, the patterns

transform first to synchronous waves (in certain cases), then asynchronous waves, and, for

large β, mixing.

Neighborhood size. To see the effects of neighborhood size, compare the three bands

corresponding to each fixed value of N . First of all, larger neighborhood size leads to

species survival (and hence coexistence) for a wider range of β values. This is a simple

consequence of the fact that a larger range provides a given species a better chance to

find its required resource. Also, larger values of r create more mixing of different types;

this leads to less spatial structure in the sense that the wave clusters are smaller when

r is larger. We will see below that this reduction in the amount of spatial structure can

happen for other reasons, as well.

Number of states. The most striking observation about the effect of the number of

states is that for N = 4 (i.e., 2 species) there are no synchronous waves and hence no

spirals. In fact, the same is also true when N = 2 since, in that case, our model reduces to

the single species contact process. Synchronous wave patterns are possible for all values

of N > 4, provided β and r are suitably chosen. Similar observations have been made

regarding catalytic hypercycle models where it is known that spiral patterns arise if and

only if the number of states in the cycle is greater than or equal to 5; see (Dieckmann

et al. 2000). Durrett and Griffeath (1993) also observed spiral waves for a suitably large

number of states in two different cyclic spatial models. One is the Greenberg-Hastings

model (one contact transition and all others spontaneous), and the other can be thought

of as a generalized rock-scissors-paper model (all transitions are by contact); in each case,

they use threshold updating for the contact transitions–a feature that encourages spiral

formation. Bramson and Griffeath (1989) discovered another phase transition involving

the number of states for a one-dimensional version of the generalized rock-scissors-paper

model; they showed that the system freezes when the number of states exceeds four, and
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otherwise keeps changing. Other interesting aspects relating to spiral formation in cyclic

spatial systems can be found in the references in the above papers. Of course, for our

model, the number of states is always even. In the next section, we will give a simple

explanation for our N > 4 threshold based on a linearization argument for a related

system of reaction-diffusion equations. As the number of states increases, one needs larger

values of β to generate synchronous waves and to survive in general, especially when the

neighborhood size is not large.

Initial configurations. For the above discussion, it was assumed that the initial con-

figuration was random, with each site independently assigned one of the N states and

probability 1/N per state. Thus any patterns that formed, such as spirals, were the re-

sult of self-organization. In some cases, parameters that led to species extinction, and

hence a frozen pattern, could produce species persistence and spiral waves under appro-

priate initial configurations. This happens for β’s in the frozen region that are not too far

from the synchronous wave region. For such β, once enough spatial structure is present

it can be maintained. There are several ways to get such “hard-to-start spirals.” If we

start with a random initial configuration, the species all die out, but before doing so the

remaining resources will have become somewhat clustered; if we then “seed” the frozen

configuration by randomly sprinkling in a small number of each species to the system,

spiral waves will form. Such behavior has been observed in other cyclic systems (Comins

et al. 1992). Often, only a very small amount of this pre-structuring is needed to get

the spiral waves started. Another way to generate spirals from parameters that lead to

frozen patterns under random initial configurations is to “train” the process, starting with

a larger neighborhood size until synchronous waves start to form, and then decreasing the

neighborhood size in the simulation. If synchronous waves have begun to form under the

larger neighborhood size, then (with such a configuration as the initial state of the process)

a reduction in neighborhood size causes to waves to become more focused and less fuzzy.

It is easy to understand how, for certain parameters, only initial configurations with some
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structure would lead to persistence and patterns. For example, in the model with 8 states

and neighborhoods of size 4, a random configuration has low probability of presenting a

given species with its required resource. This results in the various species using up the

random bits of resource available to them and then dying out before they can reproduce

again due to the lack of required nutrient in their neighborhoods.

The synchronous waves come in two forms: (segments of) circular traveling waves and

spiral waves. Along a reactive wavefront (i.e., a species invading its required resource), we

typically have a high density of the required resource. This allows a traveling wave that

is locally similar to an infectious wave in an epidemic model. In the wake of this reactive

wavefront, the invading species leaves behind its product resource, thus laying the foun-

dation for the next species. The shape theorem of interacting particle systems (Durrett

2002) provides the essential ingredients for the dynamics of a traveling reactive wavefront

started by a small localized cluster of a given species set in a uniform environment that has

all other sites holding the required resource for that species. Such a wavefront is roughly

circular in shape with the radius expanding at what is effectively a constant speed. Of

course, our model is much more complicated than this. We have multiple species and

resources, leaving an inhomogeneous mix of states in which a wavefront must spread, if at

all. Instead of finding itself in a uniform field of the required resource, a given species will

typically encounter sites that are holding other resources or other species as well as clusters

of its required resource. The result is that the species is trying to spread in a fragmented

environment. In the language of interacting particle systems, a species must spread on a

(space-time) percolation cluster of its required resource. The more fragmented and sparse

this percolation cluster is, the less likely it becomes that species members can reproduce

before dying (i.e., before the site changes from the species state to the product resource).

The only way the species can persist is to spread, and the only way it can spread in such

a fragmented environment is to have a growth rate that is sufficiently large compared to

its death rate. For example, a contact process in a random environment (that has some
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sites inaccessible to the species) has a higher required growth rate than a contact process

that has no such restrictions.

For our process, the cyclic nature of the local dynamics makes this effect of growth

rate a double-edged sword. Large growth rates enable a species to quickly gobble up bits

of its required resource almost as soon as they appear. This, however, leaves behind a

fragmented landscape for the next species and leads to a breaking up the waves. This is

why simulations with large β’s lead to mixing patterns and not synchronous waves.

With this insight, we can now recap the simulation results that appear in Figure

2.3. If β is too small, the species members cannot spread fast enough and they die out,

leaving behind a frozen state consisting only of resources. If we increase β far enough, the

species will be able to persist and coexist by synchronizing their spread with other nearby

members of the same species and leaving behind clustered regions of the resource required

by the next species. In some cases, this structure is self-organized, even from a random

initial configuration. For slightly smaller β, this synchronization may only be possible if

the process starts with some structure. As we increase β more and more, the length scales

on which the waves operate get smaller and smaller as wavefronts consistently encounter

fragmented resources that cause them to split, thus removing the potential for spiral wave

development. Asynchronous waves can be thought of as synchronous waves whose length

scales are very small. As β increases still further, the species have no trouble persisting.

Not only do they not require spatio-temporal synchronization to persist, but the high

growth rates preclude such patterning and the result is a mixing configuration.

The dynamics of spiral waves have received much attention in the literature on

reaction-diffusion equations and, to a lesser extent, in the literature on stochastic spatial

models; cf. Grindrod (1996), Murray (1989), Pálsson and Cox (1996), Savill et al. (1997),

and Dieckmann et al. (2000). We limit ourselves to a few comments on the spiral waves

observed here. Each spiral has N = 2L arms, appropriately ordered and forming a conflu-

ence at the eye of the spiral. A collision between two spirals occurs when two waves of the
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same species approach each other from different directions, consuming the same resource.

Such collisions often break off pieces of the spiral, but as long as the eye is intact the spiral

can persist. The spiral waves in the IPS model are much more irregular than those that

arise in reaction-diffusion equations and patch models; see next section.

2.3.2 Asymmetric case

Many of the above comments apply to the asymmetric case. The results of the

asymmetric simulations are summarized in Figure 2.4. We see that the patterns are

strongly influenced by the majority growth rate. However, an increase in the growth

rate of species 1 can destroy or weaken the spatial structure due to fragmentation of

the resource for the second species, much like what was explained about large β for the

symmetric case. We remark that the diagonal region in this figure corresponds to β1 = β

and hence to the 8 : 8 symmetric case treated above. Notice that the results do not

coincide exactly. This reflects two things. Firstly, the stochastic nature of the simulations

(these are from separate runs) allows for different behaviors on individual runs, especially

near the boundary regions. Secondly, as was mentioned earlier, the classification of a set of

runs into a consensus state of frozen, synchronous waves, asynchronous waves, or mixed,

was done “by eye” and states like asynchronous waves and mixed are hard to distinguish

for certain parameter values. This can also be seen in the differential equation connection

below in regions for which eigenvalues have positive real parts very close to zero.

2.4 Reaction-diffusion equations and linearization

Consider the following reaction-diffusion equation (RDE), where ui denotes the den-

sity of resource Ri, vi the density of species Si, and ∆ is the Laplacian.
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Figure 2.4: (Asymmetric Case) Simulation results for IPS model with all species having
the same death rate δ = 1, but the growth rate of species 1 is (possibly) different from
the common growth rate of species 2, . . . , L. The horizontal axis denotes the majority
growth rate β and the vertical axis denotes the growth rate β1 of the first species. The
number of states is 2L = 8 and the neighborhood size is also 8. Each small square in the
figure corresponds to the majority outcome from 10 runs starting with different random
configurations and the growth rates assuming integer values. The color scheme is the same
as in Figure 2.3.
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

∂u1

∂t
= ∆u1 + δLvL − β1u1v1,

∂v1

∂t
= ∆v1 − δ1v1 + β1u1v1,

∂u2

∂t
= ∆u2 + δ1v1 − β2u2v2,

∂v2

∂t
= ∆v2 − δ2v2 + β2u2v2,

...
...

∂uL

∂t
= ∆uL + δL−1vL−1 − βLuLvL,

∂vL

∂t
= ∆vL − δLvL + βLuLvL.

(2.3)

This is a partial differential equation that is related to the particle system in a nat-

ural way via a ‘fast-stirring’ limit (Durrett and Neuhauser 1994; Krone 2004). Roughly

speaking, this says that if, in our original IPS model, between state changes at different

sites we were to allow the ‘particles’ to jiggle around a bit by exchanging the states at

some nearby sites, then the above reaction-diffusion equation (with the same rates as in

the IPS) would serve as a good approximation to the large-scale spatial dynamics of the

particle system. By this last part, we mean that the density at a spatial point for the

solution to the RDE is approximately equal to the average density for a suitably chosen

group of sites in some spatial window in the particle system. The above references can be

consulted for a more thorough discussion on the relation between the IPS model and the

RDE. For the purposes of the present chapter, it is enough to realize that the RDE can

be used to provide information about the IPS.

In Figure 2.5 we see the behavior of the RDE (2.3) in the case of N = 6 states when

all growth rates are the same, for two different values of the common growth rate. We

solved the RDE numerically, starting with a random initial condition (in the numerical

scheme) and periodic boundary. The initial condition introduces small inhomogeneities

that are able to grow for certain parameters. When we set β = 3.8, spiraling and traveling

waves emerge and persist. When β = 5.8, the patterns die out to a spatially homogeneous

steady state. Figure 2.5 portrays the density of one of the resources; the bands of resource

are wider than those of the species, so they are easier to see. Because of the cyclic nature
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of the model and the symmetry in the parameters, it doesn’t really matter which density

is plotted.

Figure 2.5: The density of resource R1, with higher density corresponding to lighter gray
level, in the numerical solution of the RDE (2.3). Here, we have L = 3 with all species
having the same growth rate β; see symmetric case 2 below. The middle figure shows the
random initial configuration. In the left figure, β = 3.8 and spiral waves develop. In the
right figure, β = 5.8 and all spatial structure dies out to yield a homogeneous distribution.

Setting X = (u1, v1, . . . , uL, vL), we can write the RDE in vector form:

∂X

∂t
= ∆X + f(X) (2.4)

The embedded ODE for this reaction-diffusion equation, sometimes referred to as the

mean-field ODE for the IPS model, is

dX

dt
= f(X). (2.5)

We next attempt to use the RDE to predict results for the IPS simulations. We first

use a simple linearization argument to show that eigenvalues of the linear system govern

the behavior of the reaction-diffusion equation. We then apply this linearization argument

to study the two special cases treated in the particle system simulations: symmetric and

asymmetric. The study of these two mathematically tractable cases not only gives us some

insight into the IPS model, but also enables us to compare the results of the differential

equation and particle system models.



24

2.4.1 Linearization

Suppose the system (2.5) has a unique interior equilibrium X∗ = (u∗1, v
∗
1, . . . , u

∗
L, v∗L);

i.e., f(X∗) = 0 and u∗i > 0, v∗i > 0, i = 1, . . . , L. We linearize the reaction term of (2.4)

about the spatially homogeneous solution X∗ of the RDE to get:

∂Y

∂t
= ∆Y + J Y (2.6)

where Y is a small perturbation and J = Jf (X∗) is the Jacobian of f at the equilibrium

X∗. Equation (2.6) has a solution of form

Y (x, t) = c1e
i
√

J x + c2e
J t, (2.7)

where c1 and c2 are vectors that depend on the initial condition. This suggests that

the behavior of the reaction-diffusion equation (2.3) might be controlled, at least for

small perturbations of the interior equilibrium, by the Jacobian for the embedded ODE

(2.5). (For readers unfamiliar with taking functions of matrices, an exponential function

of a matrix is obtained by writing the corresponding series expansion (Hirsch and Smale

1974); the square root of a matrix involves its spectral decomposition and is constructed

from a diagonal matrix made up of square roots of the eigenvalues and two other matrices

that involve left and right eigenvectors of the original matrix (Hoffman and Kunze 1971).)

Rather than concerning ourselves with making the above equation rigorous, we simply

take it as a heuristic for the method that we now propose. (But see Section 2.4.4 below.)

We claim that the types of behavior in the IPS model seen in Figure 2.3 can be predicted

by considering the eigenvalues of the mean-field ODE (2.5) at the interior equilibrium. In

particular, we seek to explain why N > 4 is required to get spiral waves. Our approach

will be to show that, up to a scaling of the parameters, the IPS simulations agree with

the predictions based on the RDE. One should not expect a β-for-β agreement between

these two models when the particle system has finite interaction range; the fast-stirring
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limit RDE (which does have the same parameters as the original IPS model) only holds in

a limiting sense. For example, in the one-dimensional contact process the critical growth

rate is about 1.65, while the critical growth rate for the corresponding RDE is 1. What is

important is that the two model types have the same qualitative behavior.

When the Jacobian matrix J has no eigenvalues with positive real part, the spatial

inhomogeneities in the initial configuration do not grow. However, when the matrix J

has eigenvalues with positive real part, certain wave solutions initiated by the spatial

inhomogeneities can be amplified and propagate through space. Below, we investigate

several representative cases that illustrate the connection between the linearization and

the IPS results.

2.4.2 Symmetric case studies

As in the IPS model, the symmetric case here refers to parameters δ1 = · · · = δL = 1

and β1 = · · · = βL = β. It is easy to see that the system (2.5) has only one interior

equilibrium point X∗ with components u1 = · · · = uL = 1
β and v1 = · · · = vL = 1

L −
1
β .

To have all species surviving at equilibrium, and hence all densities ui and vi positive,

we require β > L. To see how number of species affects the behavior of the model, we

consider two different values of L.

Case 1 (L = 2): In this case, the total number of states in the system is 4 and

Jf (X∗) =



1− β
2 −1 0 1

−1 + β
2 0 0 0

0 1 1− β
2 −1

0 0 −1 + β
2 0


. (2.8)

Since L = 2, β > 2 is required for the existence of an interior equilibrium. The real parts

of all the eigenvalues of the matrix (2.8) with respect to different β are plotted in Figure

2.6.
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Figure 2.6: The real parts of all eigenvalues of the matrix (2.8) as a function of β > 2.

There is a zero eigenvalue for any β since the cyclic dynamics makes the matrix (2.8)

singular. There is also a negative real eigenvalue and two complex conjugate eigenvalues

with negative real parts when β < 18; for β ≥ 18, all eigenvalues are real and the three

that are nonzero are negative. The lack of positive real part in the eigenvalues implies

that the system (2.5) is stable near the equilibrium X∗ for any β > 2. The dissipative

nature of the system explains why there are no synchronized waves in the corresponding

particle system, as reported in Figure 2.3.

Case 2 (L = 3): In this case, the total number of states in the system is 6 and

Jf (X∗) =



1− β
3 −1 0 0 0 1

−1 + β
3 0 0 0 0 0

0 1 1− β
3 −1 0 0

0 0 −1 + β
3 0 0 0

0 0 0 1 1− β
3 −1

0 0 0 0 −1 + β
3 0


. (2.9)

Notice that in this case, β > 3 is required to get positive equilibrium densities. The

real parts of all the eigenvalues of the matrix (2.9), as functions of β > 3, are plotted in

Figure 2.7.

Compared to the 4-state case, a major difference in the 6-state case is that for a
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Figure 2.7: The real parts of all eigenvalues of the matrix (2.9) as a function of β > 3.

certain parameter range (3 < β < 4.5) there are eigenvalues with real part larger than

0. Therefore, within this parameter range, the system is no longer stable at the interior

equilibrium and trajectories approach what is approximately a heteroclinic orbit, as shown

in the Figure 2.8(a). When β > 4.5, the interior equilibrium is stable; Figure 2.8(b) shows

a spiraling in trajectory when β = 4.8. Interestingly, β = 4.5 is a bifurcation point where

we observe a limit cycle, as shown in Figure 2.8(c). This, again, agrees with the behavior

of the IPS model (up to a scaling of the parameters) described in Figure 2.3. Notice,

in particular, that the parameter region corresponding to coexistence via synchronous

pattern formation is adjacent to the parameter values that do not permit coexistence.

The trajectories shown in Figure 2.8 are representative, with the many other starting

states we tried yielding similar behavior.

2.4.3 Asymmetric case study

In the asymmetric case, the first growth rate β1 is different from other majority

growth rates (β) that are equal. For comparison with the particle system results, we

study the case L = 4. The interior equilibrium of the system (2.5) is given by u1 = 1
β1

and u2 = u3 = u4 = 1
β , v1 = v2 = v3 = v4 = 1

4 −
1

4β1
− 3

4β , where positive species densities
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Figure 2.8: Representative trajectories plotting the densities of the three resources for
different values of the common growth rate: (a) β = 3.8 giving spiraling-out (nearly)
heteroclinic orbit; (b) β = 4.8 giving trajectory spiraling in to stable interior equilibrium;
(c) β = 4.5 giving a limit cycle.
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requires a constraint on β and β1 in the form of positivity of the parameter

a ≡ 1
4
− 1

4β1
− 3

4β
. (2.10)

In terms of this parameter, the corresponding Jacobian matrix is

Jf (X∗) =



−aβ1 −1 0 0 0 0 0 1

aβ1 0 0 0 0 0 0 0

0 1 −aβ −1 0 0 0 0

0 0 aβ 0 0 0 0 0

0 0 0 1 −aβ −1 0 0

0 0 0 0 aβ 0 0 0

0 0 0 0 0 1 −aβ −1

0 0 0 0 0 0 aβ 0



. (2.11)

Figure 2.9 illustrates the linearization results for the asymmetric model. Notice that

the hyperbolic curve separating the black and white regions comes from Equation (2.10).

One should compare this figure to Figure 2.4 to appreciate how well the linearization and

eigenvalue argument explains and predicts the particle system behavior in the asymmetric

case.

2.4.4 A coupled map lattice interpretation

Another perspective on the connection between the behavior of the IPS model and

the mean-field ODE can be gleaned from a kind of coupled map lattice interpretation.

For specificity, we restrict this discussion to the symmetric case discussed in Sections 2.3.1

and 2.4.2.

The global (average) behavior of the IPS model is given approximately by the mean-

field ODE if the neighborhood size (i.e., the interaction range) is so large that all sites
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Figure 2.9: The largest real part for the 8 eigenvalues of the matrix (2.11) is plotted as a
function of the majority growth rate β (horizontal axis) and the growth rate, β1, of the
first species (vertical axis). The dark region corresponds to parameter values that result
in extinction of all species (i.e., no interior equilibrium and hence a frozen pattern); the
gray region on the right is where none of the eigenvalues has positive real part (i.e., the
largest real part is zero) and corresponds to mixing; in the remaining region, there are
eigenvalues with positive real part, and the gray level is proportional to the size of the
largest such real part, with lighter color corresponding to larger real part. This last region
corresponds to synchronous waves, with lighter color implying larger length scales for the
waves.
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are neighbors (Durrett 1995). For smaller interaction ranges, the ODE still provides some

information about global averages, although the parameters no longer match exactly and

stochastic effects play a more prominent role. Now imagine that the lattice is partitioned

into a collection of spatially distributed habitat patches and, with the above approximation

in mind, the dynamics within a patch proceed according to the mean-field ODE and nearby

patches interact to couple the whole system. Of course, the interaction ranges are not very

large and the “patches” overlap considerably, but such simple approximations often lead

to significant insight.

For large values of β, the mean-field ODE has a globally attracting interior equilibrium

(cf. Figure 2.8(b)). This means that the patches will have type densities that are fairly

stable; in particular, each species will be present at positive density with high probability.

So even if a patch happens to be missing a species, it has the opportunity to quickly regain

that species from surrounding patches and re-establish the approximate equilibrium. This

suggests that large β leads to mixed configurations, in agreement with our simulations of

the IPS model.

For intermediate values of β, one obtains eigenvalues with positive real part. The

interior equilibrium of the mean-field ODE is then unstable with trajectories approaching

something close to a heteroclinic orbit (cf. Figure 2.8(a)), with episodes of domination by

a single resource (and low densities of all other resources and species) followed by rapid

invasion of the preferred species (the one having the dominant resource as its required

resource) and subsequent decay to domination by the next resource in the cycle. This

means that the patches spend most of their time with type densities that are dominated

by a single resource. If this domination is strong, in the sense that the “corners” of the

trajectories in Figure 2.8(a) are close to the coordinate axes, then to keep the species from

going extinct the patches must synchronize the surges of species invasion in a way that

leads to waves of species spreading into regions dominated by a single resource. If this

happens, then there will be contiguous regions dominated by the product resource, setting
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the stage for the next species in the cycle, etc.

2.5 Discussion

Bacterial communities structure their environments to enhance persistence and co-

existence. Biofilms provide a ubiquitous example of such structuring. Another common

situation of structuring in natural communities is seen in bacterial mats. This is a striking

example of niche partitioning in which different microbial species organize themselves in

horizontal slabs along nutrient or electron acceptor gradients; here, exogenous heterogene-

ity in the environment seems to be the main force driving the spatial organization rather

than the purely self-organized pattern formation in our system. Looking at a cross-section

of a bacterial mat, one sees with the unaided eye sharp boundaries between different

species. This niche partitioning is essentially constant in time. The spatio-temporal niche

partitioning seen in the synchronous waves of our resource-species model can be thought

of as space-time slabs of different species and resources; they are, however, significantly

thinner than the static bands of a bacterial mat.

In the model presented here, the length scales of the macroscopic patterns are large

(∼ 1 mm) compared to the sizes of the bacterial cells (∼ 1 µm). To see where these lengths

come from in the IPS model, just note that lattice points correspond to the locations of

individual cells, so accounting for a cell size of about one or two µm and intercellular

distances also of the order of µm’s, we can think of the real distance between lattice

points as being roughly 1-10 µm. With hundreds (or thousands) of lattice points per side

for a typical simulation grid, we should consider our viewing window to be several mm

on a side, and hence this is also the length scale for patterns that extend across a large

portion of this window.

This spatial structuring of the resources may lead to protocols for detecting such cyclic

dynamics in the field or in laboratory bacterial communities. When spatial patterning is

strongest, the band width of resources is much larger than that for species, so methods that
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can distinguish between the different resources may be able to pick up the tell-tale patterns

even without the species being present. The length scale estimates mentioned above

should also help to direct this. In general, methods that allow one to use “macroscopic”

observations, say of large-scale spatial patterns, to acquire knowledge about the underlying

microscopic mechanisms can be quite useful.

To our knowledge, microbial systems with the specific dynamics described here have

not yet been observed, although the types of feedback mechanisms we assume are known

to exist and cyclic dynamics are quite common in nature. Furthermore, cross-feeding ap-

pears to arise quite naturally in microbial systems, even in the absence of spatial structure.

For example, Rosenzweig et al. (1994) observed the evolution of such a polymorphism in

a chemostat population of E. coli initiated with a single clone. As the population evolved

to be dominated by individuals that could more quickly exploit the single limiting nutri-

ent (glucose), the ability to assimilate secondary metabolites (acetate and glycerol) was

rendered less efficient, thus opening the way for mutant strains that specialized on these

secondary resources. Doebeli (2002) gives a nice mathematical account of the evolution

of cross-feeding polymorphisms. Despite all this evidence, it is not surprising that mi-

crobial systems with the cyclic spatial dynamics presented here have not been observed.

This is in large part due to the fact that microbial observations on such a fine spatial

scale are not often undertaken, and in laboratory communities where it is easier to gain

spatial resolution through confocal microscopy and fluorescent markers, one rarely deals

with communities of more than a few species. We consider this a challenge to microbial

ecologists.

This is an excellent area for the blending of theoretical and empirical studies in

microbial ecology. A few other examples of theoretical and empirical work combined at

the microbial level are Durrett and Levin (1997), Kerr et al. (2002), and Wei and Krone

(2005). With individual-based lattice models, we can effectively “see” at an individual

cell level the effects of certain mechanisms. This leads to biological hypotheses that can



34

be tested empirically. Our simulations show the types of patterns and length scales one

should look for and also point out that it is enough to detect the nutrient patterning. This

work also shows that spatial patterns in microbial (and other) systems can be a result of

self-organization and not necessarily the result of inhomogeneities in the substrate. It is an

example of microbial communities structuring both their abiotic and biotic environments.

In situations for which synchronous waves arise, another interesting feature holds.

Even if the species were to be driven to extinction by external forces, say due to fluc-

tuations in the environment (that are not modeled), the consumer-driven structuring of

the resources leads to the potential for rapid re-establishment of the microbial commu-

nity and its spatial structure provided a small influx of immigrants is able to re-seed the

prepared environment before this structure erodes; cf. the comments about “seeding” and

hard-to-start spirals in Section 2.3. This suggests an additional robustness to such cyclic

systems.

All of these features help to illustrate why cyclic dynamics are likely to be prevalent

in natural spatially structured systems and, in particular, why they could be a regular

component of microbial communities. More empirical evidence is needed and the results

of this paper illustrate the types of spatial patterns that one might look for. We intend

to elaborate on the themes of this chapter elsewhere by including evolutionary dynamics

in our model. 1

1The author would like to thank Larry Forney for extensive comments on the manuscript, improving
both presentation and biological precision. Thanks also to Zaid Abdo, and Holger Heuer for discussions.
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Part II

Phylogenetic Distance Methods
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Chapter 3

Least Squares and Neighbor Joining

3.1 Introduction

The neighbor-joining method of Saitou and Nei (1987) has been the most popular

distance method for inferring phylogenies because it is fast and fairly accurate. Saitou

and Nei proved that if the pairwise distance matrix were additive (cf. Saitou and Nei 1987

and Gascuel 1997a for precise definition), neighbor-joining always finds the true tree. In

addition, Atteson (1999) has shown that the additivity condition can be relaxed a little

for some distance methods, including neighbor-joining, to find the true tree. Felsenstein

(2004, p.169) has made the following comment about the neighbor-joining method:

“... although it computes their branch lengths by least squares, it does not

use the sum of squares as the criterion for choosing which pair of species to

join. Instead it uses the total length of the resulting tree, choosing that pair

that minimizes this length. This is a form of the minimum evolution criterion.

But we also cannot identify neighbor-joining as a star decomposition search for

the minimum evolution tree, neighbor-joining allows negative branch lengths,

while minimum evolution bans them.”

Furthermore, he suggested that it would be of interest to see whether a star decompo-

sition algorithm for least squares, or one for minimum evolution, could be developed that

was comparable in speed to neighbor joining. This chapter shows that neighbor joining is

indeed a special case of least squares methods.
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Among distance methods, the least squares methods are of particular interest because

they use a single objective function to solve for branch lengths and to choose among tree

topologies and can thus be related to the least squares method of statistical estimation

(Felsenstein 1997). In least squares methods, each tree topology τ is associated with a

least squares score Q(τ) (up to a constant) and a set of branch lengths estimated under

the least squares criterion given the tree topology τ . In general Q(τ) can be defined as

Q(τ) =
∑
i,j

wij(lij − dij)2, (3.1)

where lij is the path length between taxa i and j on the topology τ , the wij ’s are weights,

and the dij ’s are pairwise distances between taxa. Our goal is to find the tree with the

smallest least squares score Q(τ). (In the case when the data are additive, Q would be

zero.)

Although in theory we can calculate the least squares score for every possible tree

topology, a brute force approach is not feasible in practice because the number of possible

tree topologies increases exponentially with the number of taxa. Fortunately, we may use

a star decomposition algorithm to search tree space for the (hopefully) best tree. As its

name implies, a star decomposition algorithm starts with a totally unresolved star tree.

At each step it coalesces two taxa as one (unity), and results in a one-taxa-less star tree.

After the distances between the unity and the remaining taxa are estimated, we have a new

distance matrix of one dimension less. Repeating this dimension reduction procedure, we

obtain a totally resolved tree in the end. The choice of which two taxa to coalesce in each

step and how to estimate the corresponding branch lengths are different in each method,

of course. In neighbor-joining, the taxa to coalesce are chosen to minimize the total

tree length (minimum evolution) while the branch lengths are estimated using the least

squares criterion. Meanwhile, Weighbor (Bruno, Socci, and Halpern 2000) chooses taxa (to

coalesce) to maximize the likelihood of additivity and positivity of the observed distances;
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Bionj (Gascuel 1997a) picks taxa similar to neighbor-joining, but the new reduced distance

matrix is estimated to minimize the variances of pairwise distances. In this least squares

method, the choice of taxa and branch length estimation are done to minimize the least

squares score of the resulting tree.

In what follows, we first develop the unweighted least squares algorithm, and then

compare our algorithm with neighbor-joining to show that the two algorithms are in

agreement with each other. A short discussion on generalizing to weighted least squares

will conclude the chapter.

3.2 Unweighted least squares star decomposition

Suppose we have n taxa and pairwise distances matrix (dij). We begin with a star

tree with the center node X and let liX be the i-th branch length. Setting wij = 1 in

Equation (3.1), we have the unweighted least squares score of the star tree

Q =
∑
i,j

(liX + ljX − dij)2. (3.2)

We often refer to unweighted least squares as ordinary least squares, or OLS for short.

To compute the OLS estimate of each branch length of the star tree, we take derivatives

of Q with respect to each liX and set them equal to zero to get a linear system:

(n− 1)liX +
∑
j:j 6=i

ljX =
∑
j:j 6=i

dij (i = 1, 2, · · · , n). (3.3)

To write the above system in vector form, let L = (l1X , l2X , · · · , lnX)T be the column

vector of branch lengths, define Di =
∑

j:j 6=i dij , column vector D = (D1, D2, · · · , Dn)T ,
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and

A =



n− 1 1 · · · 1

1 n− 1 · · · 1
...

...
...

...

1 1 · · · n− 1


. (3.4)

We have AL = D. Since obviously A is a nonsingular matrix, we have

L = A−1D. (3.5)

Notice that the vector D is known. Since the matrix A has only one degree of freedom, it

is not hard to find its inverse

A−1 =



2n−3
2(n−1)(n−2)

−1
2(n−1)(n−2) · · · −1

2(n−1)(n−2)

−1
2(n−1)(n−2)

2n−3
2(n−1)(n−2) · · · −1

2(n−1)(n−2)

...
...

...
...

−1
2(n−1)(n−2)

−1
2(n−1)(n−2) · · · 2n−3

2(n−1)(n−2)


. (3.6)

Proof of (3.6). Let A = (n− 2)I +B, where I is the n×n identity matrix, B is the n×n

matrix with each entry equal 1. Then (3.6) becomes

A−1 =
1

n− 2
I +

−1
2(n− 1)(n− 2)

B.

So we have

A A−1 = ((n− 2)I + B)(
1

n− 2
I +

−1
2(n− 1)(n− 2)

B)

= I − 1
2(n− 1)

B +
1

(n− 2)
B − 1

2(n− 1)(n− 2)
B B

= I −B(
1

2(n− 1)
− 1

(n− 2)
+

n

2(n− 1)(n− 2)
)

= I.
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Notice the third equality hold because B B = nB.

Substitute (3.6) back into Equation (3.5) and we get

liX =
Di

n− 2
−

∑
k Dk

2(n− 1)(n− 2)
(i = 1, 2, · · · , n). (3.7)

These are the OLS estimates of branch lengths of the star tree.

Our next step is to pick two taxa and coalesce them into a unity. The taxa are chosen

such that Q decreases most. Define a new matrix (eij) with

eij = dij − liX − ljX (3.8)

and notice that ∑
i,j

eij = 0. (3.9)

Proof of (3.9). From (3.8) and (3.7) we get,

∑
i,j 6=i

eij =
∑
i,j 6=i

(dij − liX − ljX)

=
∑

i

Di − 2
∑
i,j 6=i

liX

=
∑

i

Di − 2(n− 1)
∑

i

liX

=
∑

i

Di − 2(n− 1)
∑

i

(
Di

n− 2
−

∑
k Dk

2(n− 1)(n− 2)
)

=
∑

i

Di −
2(n− 1)
n− 2

∑
i

Di +
n

n− 2

∑
k

Dk

= 0.

Equation (3.9) is also an immediate consequence of Property 5.1 of Gascuel (1997b).

Obviously, Equations (3.2) and (3.8) imply Q =
∑

i,j e2
ij . For each entry eij , we may have
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three different cases.

1. eij < 0 implies the distance between taxa i and j (the sum of liX + ljX) is over -

estimated. If we coalesce taxa i and j and let them share an internal branch to node

X (see Figure 3.1), we can decrease Q.

2. eij = 0 implies the distance between taxa i and j is exactly estimated.

3. eij > 0 implies the distance between taxa i and j is under -estimated, therefore, taxa

i and j should be separated by internal branches in order to decrease Q.

Each negative entry in matrix (eij) provides a candidate taxa pair i and j to be

coalesced. Equation (3.9) guarantees the supply of negative entries in (eij). (In the trivial

case where all eij = 0, the star tree would be the best tree. Otherwise, we have at least

one eij < 0.) We need to decide which pair to coalesce when we have multiple choices of

negative entries.

X
XY

1

2

1

2

Y
v

1

Y
v

2

XY
v

X
l
1

X
l

2

Figure 3.1: One step star decomposition. The left figure shows a star tree with internode
X and the branch lengthes (l1X ,l2X ,· · · ) are estimated by least squares. The right figure
shows coalescing of taxa 1 and 2 to form a unity node Y , and new branch lengths (v1Y ,
v2Y , vXY ,· · · ) are estimated.

Without loss of generality, assume e12 < 0. Figure 3.1 shows the coalescence of taxa



42

1 and 2 and the corresponding branch lengths. Set

l1X = v1Y + vXY

l2X = v2Y + vXY

d12 = v1Y + v2Y

Note that in the above system, l1X , l2X and d12 are known, so we can easily solve for the

three unknowns v1Y ,v2Y and vXY and get

vXY = (l1X + l2X − d12)/2

v1Y = (d12 + l1X − l2X)/2

v2Y = (d12 + l2X − l1X)/2.

(3.10)

After coalescing taxa 1 and 2 and computing the new branch length using Equation

(3.10), we have the new error between taxa 1 and 2 as e′12 = d12− v1Y − v2Y = 0. But e1k

and e2k stay the same for k = 3, 4, · · · , n. We have immediately that Q as defined in (3.2)

decreases by e2
12. This implies that in order to maximally decrease Q, we should pick the

negative entry with the maximum absolute value in the matrix (eij) and coalesce taxa i

and j.

Let Y be a new taxon representing the unity of taxa 1 and 2. We need to estimate

the distance dkY between taxon Y and k for all k > 2. We shall use the same formula as

in (Saitou and Nei 1987) to estimate dkY :

dkY = (d1k + d2k − d12)/2. (3.11)

In fact, Equation (3.11) is a special case of what Gascuel (1997a) called a “reduction

formula.” In the same paper, Gascuel has shown, among other things, that computing

dkY using Equation (3.11) will preserve the “additive property” of the data. The new
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dkY ’s and the remaining dij ’s, i, j > 2, give us a new distance matrix of one dimension

less. Thus, we may repeat the above procedure until the tree is totally resolved.

We comment that, in general, if we calculate vXY , v1Y and v2Y differently (see dis-

cussion), the decrease of Q might involve multiple terms of eij . However, once we use

Equation (3.10) to calculate vXY , v1Y and v2Y , e12 is the only modified error term as

defined in Equation (3.8); others are all kept the same. In other words, Equation (3.10)

in fact singles out one error term and screens out others, so that we may focus on one

taxa-pair at each dimension reduction step. It is worthwhile to point out that the method

presented here is to search (a tree space) for optimal trees (the ones with lowest least

squares scores) using star decomposition. This approach belongs to a class of methods

called “dynamic programming.” Very loosely, the spirit of dynamic programming is to

“worry about one thing at a time”. Equation (3.10), by fixing the rest of the eij , enables

us to “worry” about one of them (the negative one with maximum absolute value) at a

time.

There is a resemblance (formula-wise) between the method presented here and the

one in the appendix of Saitou and Nei (1987). We emphasize two major differences here.

First, what Saitou and Nei have shown is that the total tree length as in Figure 3.1 (right)

is the sum of the least squares estimates of branch lengths. This is exactly why they

need the “minimum evolution” criterion — they use total tree lengths (instead of least

squares scores) to pick two taxa to coalesce. On the other hand, we show here that one

can use least squares scores to pick two taxa to coalesce, and the branch lengths are

also estimated from the least squares criterion, so that it is a pure least squares method.

Secondly, Saitou and Nei focus on trees as in Figure 3.1 (right), while we mainly work with

star trees (Figure 3.1, left). Putting minimum evolution aside, we have an “advantage”

in that the mathematics is simpler. For example, the inverse of matrix A as in Equation

(3.4) is easy to guess.

In summary, the unweighted least squares star decomposition has following steps:
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1. For each tip, compute a branch length using Equation (3.7).

2. Compute (eij) using Equation (3.8). Choose the i and j such that eij is the negative

entry with maximum absolute value. If all eij = 0, stop and an optimal tree (may

not be a totally resolved tree) is obtained.

3. Coalesce i and j as Y . Compute the branch length of (viY ) and (vjY ) using Equation

(3.10) with i replacing 1 and j replacing 2, respectively.

4. Compute the distance between the unity node Y and each of the remaining tips

using Equation (3.11) with i replacing 1 and j replacing 2 respectively.

5. Delete tips i and j from the table and replace them by the unity Y , which is now

treated as a tip.

6. If more than two nodes remain, go back to step 1. Otherwise connect the two

remaining nodes (say h and m) by a branch of length dhm.

3.3 Neighbor joining vs. least squares

The neighbor-joining algorithm (as modified by Studier and Keppler 1988; see also

Felsenstein 2004, p.167) is:

1. For each tip i, compute li =
∑n

j:j 6=i dij/(n− 2).

2. Choose the i and j for which dij − li − lj is smallest.

3. Join items i and j. Compute the branch length from i to the new node (vi) and

from j to the new node (vj) as

vi = (dij + li − lj)/2 vj = (dij − li + lj)/2
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4. Compute the distance between the new node (ij) and each of the remaining tips as

d(ij),k = (dik + djk − dij)/2

5. Delete tips i and j from the table and replace them by the new node, (ij), which is

now treated as a tip.

6. If more than two nodes remain, go back to step 1. Otherwise connect the two

remaining nodes (say h and m) by a branch of length dhm.

If we compare least squares with neighbor-joining, we can see that the major difference

between them is the computation of liX and li. In least squares,

liX =
Di

n− 2
−

∑
k Dk

2(n− 1)(n− 2)
,

while in neighbor joining,

li =
n∑

j:j 6=i

dij/(n− 2).

However, liX − li =
P

k Dk

2(n−1)(n−2) is a constant, and in the subsequent computations of

vi, vj and d(ij),k, the constant has been cancelled. So, the least squares method and

neighbor-joining result in the same topology and same branch lengths.

3.4 Discussion and conclusion

Weighted least squares star decomposition and its difficulty

It has been pointed out, for example, by Gascuel, Bryant, and Denis (2001), that un-

weighted least squares implicitly assumes each estimated pairwise distance is independent

and has the same variance, which is not generally true. Weighted least squares accounts

for the variable variance of the estimates and hence tends to be more reliable. The most
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reliable method to estimate branch lengths is generalized least squares, which in addition

takes into account the covariance between estimates. Such discussion is beyond the scope

of our chapter and we recommend (Gascuel, Bryant, and Denis 2001) and (Felsenstein

2004, chap. 11) for more details.

For weighted least squares, we may take derivatives of Q in Equation (3.1) with

respect to li and set them equal to 0. Borrowing the notation from the unweighted least

squares, we can calculate the weighted least squares estimates of branch lengthes and we

get:

L = B−1D

where

B =



∑
k 6=1 w1k w12 · · · w1n

w21
∑

k 6=2 w2k · · · w2n

...
...

...
...

wn1 wn2 · · ·
∑

k 6=n wnk


. (3.12)

However, by standard matrix manupulation, the complexity to find the inverse of the

matrix B is O(n3) and this will slow down the speed of the algorithm to O(n5) comparing

to O(n3) of the unweighted least squares case. The unweighted case is faster because we

have a simple explicit formula to calculate the inverse. Although by assuming wij = wiwj

the explicit formula to calculate the inverse of matrix B has been found (result not shown),

it does not ease the computation of the inverse. For people who are interested in fast

numerical recipes, we recommend (Bryant and Waddell 1998) and references therein.

Branch length estimation

Felsenstein has pointed out (personal comm.) that there are other methods for esti-

mating dkY than the one given in Equation (3.11). For example, since Y represents two

taxa it is reasonable to give more weight to the inner branch length vXY (see Figure 3.1).

Then the new distance matrix with one dimension less would be slightly different from
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the current algorithm. Whether or not such a difference would affect the taxa choice in

the following step, to what extent it will affect the final result, and how different weight

would affect the robustness of the algorithm remain interesting open questions that might

be answered by extensive simulations.

Bottom-up vs. top-down

Methods that use star decomposition, like neighbor-joining, adopt a bottom-up ap-

proach to search tree space in the sense that it starts from the tips of a tree and traces back

to the root. It is natural to consider the possibility of the reversed “top-down” approach,

i.e., one may start from the root of a tree and recursively partition the taxa into subgroups,

reaching out to the tips. In a possible future work, we will report on such a “top-down”

algorithm that is fast and is a by-product of the proof reported in this chapter.

To conclude, in this chapter we have not proposed a new algorithm that competes

with neighbor-joining. Rather, we have shown that the neighbor-joining algorithm can

be classified into the least squares framework, so that the two criteria of neighbor-joining

(least squares and minimum evolution) are essentially one (least squares). We may thus

regard the neighbor-joining method as an unweighted least squares method to search the

optimal tree through star decomposition. Thus it explains why neighbor-joining is so

robust. 1

1The author would like to thank Joe Felsenstein for illuminating comments and discussions. Thanks
also to Jack Sullivan and Roland Fleißner for their comments and discussions.
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Part III

Markov Chain Monte Carlo



49

Chapter 4

Markov Chain Monte Carlo in Small Worlds

4.1 Introduction

Markov Chain Monte Carlo (Gamerman 1997) is a sampling scheme for surveying a

space S with a prescribed probability measure π. It has particular importance in Bayesian

analysis, where x ∈ S represents a vector of parameters and π(x) is the posterior distri-

bution of the parameters conditional on the data. MCMC can as well be used to solve the

so-called missing data problem in frequentist statistics. Here, x ∈ S represents the value

of a latent or unobserved random variable, and π(x) is its distribution conditional on the

data. In either case, MCMC serves as a tool for numerical computation of complex inte-

grals and is often found to be the only workable approach for problems involving a large

space with a complex structure where traditional numerical methods are not possible.

As its name implies, MCMC does not attempt to draw elements of S independently

of each other, but instead relies on a Markov chain which moves through S. Probably the

most widely used version of MCMC is the Metropolis-Hastings algorithm (Hastings 1970)

which works in the following way: Suppose the chain is at a point x ∈ S, the algorithm

then proposes a move to y ∈ S following some proposal distribution q(x, y). The move

from x to y is either accepted or rejected and the acceptance probability is given by

a(x, y) = min
(

1,
π(y)q(y, x)
π(x)q(x, y)

)
(4.1)

Therefore, the constructed Markov chain moves from state x to state y with prob-
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ability T (x, y) := q(x, y)a(x, y). It is easy to check that the detailed balance equation

π(x)T (x, y) = π(y)T (y, x) holds. Hence, setting up the acceptance probability in the

above way results in an ergodic reversible Markov chain (Meyn and Tweedie 1996) with

stationary distribution π provided that q(x, y) is ergodic. This means that if we are able

to run this chain long enough the frequency with which we observe x ∈ S in our sample

will converge to π(x). However, if we do not pick the proposal distribution q(x, y) wisely

the Markov chain might reject most of the proposals and thus may not be active enough

to reach the stationary distribution in a reasonable number of steps. Furthermore, if π

has heavy tails or multiple modes it may become difficult for the chain to explore all the

important regions of S.

To ensure activeness of the chain many implementations of the Metropolis-Hastings

algorithm use local proposals. Assuming that S is a metric space with metric d, typically

taken to be the Euclidean distance, we call a proposal distribution q(x, y) a local proposal

if q(x, y) decreases rapidly with increasing distance between x and y, as is the case if q(x, ·)

is a normal distribution or if it has a compact support,i.e., q(x, y) = 0 if d(x, y) > r for

some finite r. If π is a smooth function then picking y in the neighbourhood of x will lead

to a high acceptance rate a(x, y). However, the resulting small step size means that it

will take a large number of steps to move a substantial distance from the starting point.

Therefore, it has been argued (Jarner and Roberts 2001) that, at least if π is heavy tailed,

the proposal distributions should have heavy tails, too.

In the next two sections, we will demonstrate how very simple heavy-tailed proposal

distributions – namely mixtures of local proposals and random draws – outperform pure

local proposal schemes, especially if π is multi-modal. We will first work out some mathe-

matics to illustrate why these proposal distributions should perform better than traditional

MCMC (Section 4.2). Then we will present some simulations to support our argument

(Section 4.3).

Throughout this chapter, we will assume that S, the state space of the Markov chain,
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is a space with some metric d(·, ·) and that it is equipped with the Borel σ-field B(S)

and two measures: a canonical measure µ and a probability measure π, the stationary

distribution of the Markov chain on S. Let |B| := µ(B) for any B ∈ B(S). We assume

|S| < ∞. In the continuous case, S typically is a compact subset of Rn typically with

Lebesgue measure as its canonical measure, while in the discrete case, S is a finite set with

µ being counting measure. Let Nx = {y : d(x, y) < r} denote the local neighborhood of

x. We further assume that the standard local proposal q(x, y) is the uniform distribution

over Nx, i.e., q(x, y) = 1/|Nx| if y ∈ Nx, 0 otherwise. In order to keep the notation simple

the rest of this chapter will only describe the discrete case. Yet, as any implementation

of a continuous problem would necessitate the discretization of S, this does not affect the

applicability of our method.

4.2 Metropolis-Hastings with small-world proposals

4.2.1 Small-world proposal distributions

Our choice for a modified proposal distribution is motivated by the so-called small-

world networks (Watts and Strogatz 1998). These graphs are characterized by a much

shorter average path length than regular lattices in spite of retaining considerable reg-

ularity. They can be constructed by randomly rewiring a small fraction of the edges of

a regular network. It turns out that replacing a relatively small number of edges with

long-range connections results in a drastic decrease in the average path length.

In the context of the Metropolis-Hastings algorithm we may impose such a “small-

world effect” by altering the proposal distribution as follows. With a large probability

1 − p, a move is proposed according to the local proposal distribution. However, with

some small probability p, we propose, for example through a random draw from S, a move

that is typically far away from the current state. These “wild” proposals play the role of

the long-range connections in the small-world networks. Precisely, if q(x, y) is our local
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proposal distribution and |S| represents the canonical measure of S then let

p(x, y) := (1− p)q(x, y) + p/|S| (4.2)

be the new proposal distribution. We call such a mixture of local proposals and random

draws a small-world proposal distribution. In the following we refer to a Markov chain

which uses small-world proposals as a small-world chain or SWC and we call a chain

which only relies on local proposals a local-proposal chain or LPC. Below, we show how

the probability of making a large jump in a SWC depends on π (Section 4.2.2), then

calculate the cost of a SWC in terms of the chain’s average acceptance rate (Section

4.2.3), and provide a rule for how to choose p (Section 4.2.4).

4.2.2 The probability of large jumps

Suppose A and B are two disjoint subsets of the state space S. Let us also assume

that none of the points in B lies in the neighbourhood of a point in A. Then the probability

that a SWC which is currently wandering in A jumps to a site in B in a single step is

given by

λ =
∑
x∈A

∑
y∈B

π(x)
π(A)

min
(

1,
π(y)
π(x)

)
p

|S|
(4.3)

where π(A) =
∑

x∈A π(x). To gain some insight into Equation (4.3), consider three special

cases:

1. If A corresponds to a flat region and B to a hill, then π(y) > π(x), for y ∈ B, x ∈ A.

From (4.3), we get λ = p |B||S| , which is proportional to the relative size of B.

2. If A is a hill and B is a flat region, then π(y) < π(x), for y ∈ B, x ∈ A. From (4.3),

we get λ = p 1
|S|

1
π(A)/|A|π(B). Notice that π(A)/|A| is the average probability, or

average height, of A. The higher A, the more difficult it is for a chain to jump out.

λ is also proportional to the total measure of the flat region B.
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3. If both, A and B, are hills. Using the fact that

min(a, b) =
1
2

((a + b)− |a− b|) , (4.4)

we get

λ =
1
2
p
|B|
|S|

(
1 +

π(B)/|B|
π(A)/|A|

− 1
π(A)|B|

∑
A

∑
B

|π(x)− π(y)|

)
. (4.5)

The last term in the parentheses is proportional to the average cross-variation be-

tween A and B. The second term in the parentheses is the ratio of the average

height of hill B and the average height of hill A. |B|
|S| is the relative size of set B. So

if the cross-variation is small and if the ratio of the average heights is about 1, then

we get λ ≈ p|B|/|S|.

If we ignore all the paths that lead from A to B without a direct jump from the first

subset to the latter, we may use λ as an indicator of how fast the SWC travels between

distinct regions of S. In case (1) as well as in case (3), the speed is proportional to the

relative size of the second hill. Note also that in case (3) the size of the valley between

two hills does not influence the speed with which the chain jumps between the two hills.

Notice also that the mean time to move from a flat spot to a hill depends only on the

size of the space and not on its dimension. From case (2), we can see that the probability

of jumping off a hill to a flat region is proportional to the total probability measure of

the flat region. In the case that this total probability measure is small, most proposals

of jumping off hills will be rejected. Hence, the Markov chain stays for a long time in

important regions.

That the situation is quite different for local proposals can be seen in the following

simple example of a multi-modal space where the mean time to move from the ‘major hill’

to the ‘minor hill’ can be calculated explicitly. The point of the exercise is to demonstrate

that even for simple spaces the mean time to move from one hill to the next will be an
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Figure 4.1: π(x) as used in example 1.

exponential function of the distance between the hills for a local proposal distribution.

Whereas, a SWC will move from one peak to the other in a time that is linear in the

distance between the two peaks. Here our neighborhood size is one unit in length. A

larger neighborhood will only change the scale factor in the exponential distribution.

Example 1 Let x ∈ S = [0, L) ∩ Z and suppose that π(x) ∝ αe−αx for 0 ≤ x ≤ a

and π(x) ∝ e(x−L) for a < x < L. Consider a very simple proposal distribution where a

move one unit to the right or left is made with equal probability. That is p(k, k + 1) =

p(k, k − 1) = 0.5. Note that π(k+1)
π(k) = e−α for k + 1 < a. Now let Tk be the time it takes

to move one step down the left hill from state k to state k + 1. To calculate E(Tk) we

develop a recursion equation by conditioning on all the possible one step moves that can

be made while in state k. In order to move one step to the right down the hill, we must

propose a move to the right and then accept that move. If instead we propose a move to

the right, but reject that move then the process starts anew. We may also propose a move

to the left and climb back up the hill. Conditioning on these three possibilities leads to

the following recursion for E(Tk):

E(Tk) =
1
2
e−α +

1
2
(
1− e−α

)
[E(Tk) + 1] +

1
2

[E(Tk−1) + E(Tk) + 1] . (4.6)
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This implies

E(Tk) = eαE(Tk−1) + 2eα − 1. (4.7)

We are ultimately interested in the time it takes to move all the way down the hill

to the reach the second mode. Denote this time by Sa where

Sa =
a−1∑
k=0

Tk.

Since E(T0) = eα it follows from (4.7) that

E(Sa) = eαE(Sa−1) + (a− 1)(2eα − 1) + eα.

Since this is a simple linear recursion we can solve it explicitly and get

E(Sa) = eαa + [(a− 1)(2eα − 1) + eα]
[
eαa − 1
eα − 1

]
. (4.8)

The exponential function in this example descends much more slowly than the normal

distribution which is often used to test MCMC algorithms. Still, Equation (4.8) shows

that the mean time to move between the two hills is an exponential function of their

distance. If we replaced the exponential with the normal distribution the situation would

be even worse giving E(Sa) ≈ eαa2
. A SWC, on the other hand, would move between this

example’s two hills in a time whose mean is a linear function of their distance, as can be

seen by replacing |B| in the discussion of Equation (4.3) with L− a and |S| with L.
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4.2.3 Average acceptance rate

By (4.1) and (4.2), the average acceptance rate for a small-world chain at equilibrium

can be expressed as:

a =
∑
x∈S

∑
y∈S

π(x)
(

(1− p)q(x, y) +
p

|S|

)
min

(
1,

π(y)
π(x)

)
. (4.9)

Under the assumption that q(x, y) = 1/|Nx| for y ∈ Nx, we get:

∑
x∈S

∑
y∈S

q(x, y) min(π(x), π(y)) = 1− 1
2|Nx|

∑
x∈S

∑
y∈Nx

| π(x)− π(y) | (4.10)

and
p

|S|
∑
x∈S

∑
y∈S

min(π(x), π(y)) = p

(
1− 1

2|S|

)∑
x∈S

∑
y∈S

| π(x)− π(y) |. (4.11)

Denote

Vl =
1

2|Nx|
∑
x∈S

∑
y∈Nx

|π(x)− π(y)|

Vg =
1

2|S|
∑
x∈S

∑
y∈S

|π(x)− π(y)|.

It is easy to see that Vl is the average local variation of π whereas Vg is its average

global variation. Substituting them back into (4.9), we get the average acceptance rate as

a = 1− Vl + p(Vl − Vg) (4.12)

Notice that 1 − Vl is the average acceptance rate for the local proposal. In the case

where the probability distribution is not too noisy, we have Vl < Vg. Therefore, the average

acceptance rate of the SWC decreases compared to that of the LPC and this is what we

have to pay when using small-world proposals. However, this is a small price, since the

dominant term 1−Vl is at least one order of magnitude larger than p(Vl−Vg) and usually
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the two terms in (4.12) differ by two to three orders of magnitude. In the case where the

probability distribution is very noisy, one may get Vl > Vg. In that case the best choice

would be to increase p all the way up to 1 and end up with random sampling.

Thus, allowing for wild proposals usually decreases the average acceptance rate. One

should, however, keep in mind that a high acceptance rate does not mean fast convergence

(Roberts, Gelman, and Gilks 1997). In all of the examples described below, the LPC had

a reasonably good acceptance rate. This only means that the local proposal was doing a

good job sampling one of the regions, but because the local proposal did not reach the

other regions the LPC did not converge. In fact, we could improve the acceptance rate by

making the neighborhood size smaller for the local proposal distribution, but this would

only serve to sample one of the regions more thoroughly.

4.2.4 Simple strategies for choosing p

In this section we assume that the space S is partitioned into two disjoint subsets A

and B. B will represent the “important” region, which can be thought of as a collection

of hills. A will be the “unimportant” region which can be thought of as the flat region

of the space S. We will assume that π(y) > π(x) for all y ∈ B and x ∈ A. If we again

ignore any paths from A to B which do not involve large jumps, we can use the result

from Section 4.2.2, that the probability of moving from a flat spot to a hill is λ = |B|
|S| p.

Hence, the mean time it takes to move from the unimportant region A to the important

region B is approximately
1
λ

=
|S|
|B|p

.

However, the SWC also bears a cost due to its lower acceptance rate. Here, we describe

how to choose p so as to minimize the effect of this trade off. We view the time spent

in the flat region and the proposed moves from the hill back to the flat region as wasted

steps in the chain; all other steps in the chain are used to explore the important part of

the space. Suppose that a SWC is run for M steps and let h(p) be the mean number of
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wasted steps. Then

h(p) =
|S|
|B|p

+ Mp

(
1− |B|

|S|

)
. (4.13)

Denote by r = |B|/|S| the fraction of the space that contains the hills. We now solve

for p that minimizes h(p). Indeed, since

h′(p) = − 1
rp2

+ M(1− r),

setting h′(p) = 0 and solving gives

p =
1√

Mr(1− r)
≈ 1√

Mr
.

For example, if you run the SWC for 1 million steps and the important region con-

taining the hills represents one percent of the total then p should be set to 0.01. Normally,

we will not know r in advance, but have to make a guess. However, if for example one’s

guess for r is two orders of magnitude too high, then, due to the square root, p will only

be too low by one order of magnitude. Note also that in the simulations described in the

next section we chose p in the range of 10−4 to 10−1 and no matter which value we picked

the SWC always performed better than the LPC.

4.3 Simulations

4.3.1 A two dimensional distribution with four main modes

In the first simulation we use local-proposal and small-world chains to explore the

probability distribution shown in Figure 4.2. The underlying space S is a 2-dimensional

integer grid {1, . . . , 5000} × {1, . . . , 5000}.

For both types of chains, the local proposal was simply proposing one of the 8 sur-

rounding neighbours with equal probability. For the SWC we occasionaly proposed a

random point of the grid. Figure 4.3 shows the results for three runs of the LPC and three
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Figure 4.2: The probability distribution used in the first simulation; the lightness of a
pixel is proportional to its point mass.

Figure 4.3: The results of the first simulation. The top row shows three runs of the LPC
with 106 steps; the bottom row shows three runs of the SWC with 106 steps with different
values of p (the leftmost being 0.0001, the middle one 0.001 and the rightmost 0.01).
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Figure 4.4: In the second simulation our probability distribution was the 10-dimensional
equivalent of this figure.

runs of the SWC with varying p.

We can see that for this simulated distribution with four main modes, the LPC gets

trapped within one peak, while the SWC surveys the whole distribution appropriately, the

highest of the three values of p giving the best fit to the original distribution.

4.3.2 A high dimensional example

Here, we simulated a 2-modal mixed normal distribution over the grid {0, 1, ..., 999}10.

Thus, the state space had 1030 points, which should not be manageable for any numerical

method. Figure 4.4 illustrates the situation with the corresponding 2-dimensional case.

Again, we sampled the space with both LPC and SWC. For the LPC, the proposals

were randomly chosen from the 310 − 1 neighbours of the current state, while the SWC

proposed a random state within the whole space with p = 0.01. To compare the results

between LPC and SWC, we simply counted the sample points in the two peak regions:

one being the set A = (0, 200)10 and the other one being the set B = (800, 1000)10. We
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SWC LPC
visits to set A visits to set B visits to set A visits to set B
2118493 2079152 0 4068403
2820473 1509184 0 4056310
2728981 1536989 0 4047301
3741123 689508 4497207 0
3374184 934000 0 4069861
3047729 1314131 4452966 0
2462776 1697934 0 4027776
2562090 1696232 0 4096586
2501613 1719777 4532164 0
3285900 1035378 0 4103339

Table 4.1: The results of the second simulation showing the number of times the SWC
(left column) and the LPC (right column) visited region A and B of the state space. The
rows correspond to ten independent runs.

ran 10 independent LPC and SWC. Each run had 108 steps, yet only every tenth step was

recorded. Table 4.1 shows the results.

The left column is the result for the SWC. We can see that in each run the chain

explores both peaks. The right column on the other hand is the result for the LPC. We

can see that in each run the chain either gets trapped in set A or in set B.

4.3.3 SWC in infinite spaces

In order to demonstrate that the applicability of small-world proposals is not limited

to the discrete case and finite spaces, we sampled a mixture of two normal distributions

on R4, namely the density

1
2f(x1)f(x2)f(x3)f(x4) + 1

2g(x1)g(x2)g(x3)g(x4) where f(xi) ∼ N(−10, 4) and g(xi) ∼

N(10, 4). As in the previous simulation, we ran 10 independent LPC and SWC, each

for 108 steps, and every tenth step was recorded. The local proposal incremented each

component of the current point with a number drawn from N(0, 0.5), while the wild

proposals of the SWC used increments drawn from a Cauchy distribution whose full width

at half maximum was 20. The frequency p of these wild proposals was set to 0.1. Table

4.2 summarizes the results of this simulation. Just like in the discrete case, each of the
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SWC LPC
visits to A visits to B visits to A visits to B
2484103 1937147 4419221 0
2239322 2179364 0 4430577
2240084 2197521 4417074 0
2179757 2231809 0 4432532
2147068 2268633 0 4426766
2272973 2151260 4417081 0
2228271 2199696 0 4414427
2296054 2123406 0 4421527
2191123 2222683 4430064 0
2297794 2107059 4425759 0

Table 4.2: The results of the third simulation showing the number of times the SWC (left
column) and the LPC (right column) visited regions A and B of the state space, where
A and B are hyper-balls with radius 3 centered at (-10,-10,-10,-10) and (10,10,10,10)
respectively. The rows correspond to ten independent runs.

LPC got stuck at one of the peaks whereas the SWC always managed to explore both of

them.

4.3.4 An example of a distribution with traps

The probability distribution used in our fourth simulation is shown in Figure 4.5.

This distribution has one main hill in the center and four heaps at each corner surrounded

by an almost null recurrent region. As the chance for an LPC to find the heaps is extremely

small, we used only SWC in this simulation. We ran 10 independent chains for 107 steps,

with p = 0.1 and recorded every tenth sample point.

The results of this simulation are collected in Table 4.3. All five hills were found in

each run.

4.3.5 SWC in a heterogeneous space

To see how well an SWC performs in very heterogeneous spaces we took a picture

which is often used in image processing, converted it to gray scale and increased the

contrast by taking the fourth power of each gray level. Then we ran both LPC and SWC
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Figure 4.5: The two-dimensional distribution used in the fourth simulation. The whole
space has size 10000× 10000.

A B C D Center
62194 60062 59019 64989 504718
52897 55617 66427 58123 478288
57943 68062 57264 68815 508021
63832 55247 57274 62762 497264
53808 63851 60561 50230 467570
54432 61555 64119 64871 455125
58708 72168 63017 66713 491471
64462 60580 61251 60949 453775
70234 62663 67625 55654 489553
55683 60116 66087 53879 460234

Table 4.3: The results of the fourth simulation showing the number of times the SWC
visited the four heaps (columns A-D) and the central hill (“Center”) of the probability
space shown in Figure 4.5. The rows correspond to ten independent runs.
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Figure 4.6: Results of sampling Lena. Top row: the results for the LPC. Bottom row: the
results for the SWC. The original picture is displayed on the right-hand side. Figures 4.6.1
and 4.6.3 correspond to 50000 steps and Figures 4.6.2 and 4.6.4 to 107 steps, respectively.

to sample the picture. Again, p was set equal to 0.1 and every tenth sample point was

recorded. The results as well as the original image are shown in Figure 4.6.

Although the difference between the LPC and SWC samples are subtle, one can

see, that the image reconstructed with the LPC lacks some details like, for example, the

highlight on the hair. One should also note that the SWC image is already very detailed

after only 50000 steps.

4.3.6 SWC and importance sampling

Our final example illustrates how small-world proposals can be used in the context

of importance sampling (Hastings 1970). Suppose we want to estimate the expectation

Eπ(f(X)) of a random variable f(X) with respect to a probability measure π. Although

Monte Carlo integration (Rice 1994), i.e., drawing a sample from π and averaging the

obtained values of f(X), is one way to achieve this goal, the resulting estimate might

have a high variance since f(x) might have maxima where π(x) is small. Therefore, it

is advisable (Press, Flannery, Teukolsky, and Vetterling 1992) to sample not from π but
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Figure 4.7: The function f(x) = 10(e−10(x−1)2 + e−10(x−4)2) to be integrated in Section
4.3.6.

from a new distribution π′ ∝ fπ which gives an appropriate weight both to the function

f and to the original distribution π. Assuming, without loss of generality, that f > 0,

one can easily check that Eπ(f(X)) = 1/Eπ′(1/f(X)). Hence we can use the following

estimator

̂Eπ (f(X)) =
N∑N

t=1
1

f(X(t))

, (4.14)

where the X(t) are taken from π′. Notice, however, that this importance sampling will in

many cases require a chain to sample from a multi-modal space. Thus, its wide use has

been restricted due to the limitations of local-proposal chains. Small-world chains, on the

other hand, should be well suited for this problem.

In our final simulation we therefore compared the performance of local-proposal chains

sampling directly from π and of small-world chains which sampled from (f(x)+1)π(x) (see

Figure 4.9) for the function f(x) plotted in Figure 4.7 and the π(x) shown in Figure 4.8.

The reason for using f +1 instead of f is the high variance which might result from small

values of f . This of course has to be taken into account when applying Equation (4.14).

Each chain was run for 105 steps and every 100th step was recorded. The parameter p of

the SWC was set to 0.1. We also ran simulations in which an LPC tried to sample from
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Figure 4.8: The density π(x) ∝ e−(x−2.5)2 from which the LPC in Section 4.3.6 takes its
sample.
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Figure 4.9: A plot of (f(x)+1)π(x). The SWC in Section 4.3.6 samples from this function.
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Figure 4.10: The estimates ̂Eπ (f(X)) in 100 independent runs of the LPC. The mean of
the estimates is 0.770 with a standard deviation of 0.571.

(f(x) + 1)π(x), yet they always got stuck at one of the modes (data not shown).

Figures 4.10 and 4.11 show the estimated expectations for 100 independent runs of

the LPC and the SWC respectively. While there is a considerable variation among the

values obtained with the LPC, the estimates produced by the SWC are all very close to

the true value which is approximately 0.780.

4.4 Discussion

The purpose of this chapter was to present a general yet simple idea for a proposal

distribution that leads to a better convergence of MCMC. In all the examples in this

chapter the small-world chains performed dramatically better than the chains which only

relied on local proposals. While the local-proposal chains got stuck at one mode of the

distribution (see Sections 4.3.1, 4.3.2 and 4.3.3) or missed important details (see Section

4.3.5), the small-world chains were even able to explore the extremely heterogeneous space

of Section 4.3.4. The small-world chains’ ability to sample multi-modal spaces also per-

mitted the application of importance sampling in a case where local-proposal chains failed

(see Section 4.3.6).
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Figure 4.11: The estimates ̂Eπ (f(X)) in 100 independent runs of the SWC. The mean of
the estimates is 0.785 with a standard deviation of 0.00897.

Through most of this chapter, we stuck to the mathematically tractable case of a

Markov chain on a finite grid since this is also the case which is the most relevant one

when implementing this algorithm. We also focused on the simplifying scenario that

local proposals essentially behave like uniform random walks and that we can generate

wild proposals by drawing a point from the space at random. Yet, as demonstrated in

simulation 4.3.3, the small-world idea can also be applied when sampling from a continuous

density on an unbounded space. There, one just has to use a sufficiently heavy-tailed

distribution for the wild proposals like for example a wide Cauchy distribution. Taking

a uniform random walk as exemplary local proposal instead of e.g. a normal random

walk is also unproblematic since the central limit theorem guarantees that a uniform

random walk and a normal random walk will be very similar local proposal distributions.

Hence, replacing the uniform local proposals with the more typical normal proposal should

not affect the principal results. We are not advocating exchanging every thinkable local

proposal for a mixture of two uniform distributions, but rather relying on occasional wild

proposals as a way to improve on any local proposal scheme. Therefore, we did not

investigate the performance differences which still might exist between different types of

local proposals.
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Of course, there exists a great variety of other methods which try to ensure conver-

gence of MCMC [cf. Tierney (1994), Chib and Greenberg (1995), Gilks, Richardson, and

Spiegelhalter (1996)]. For example, we might know enough about the target distribution

π(x) so that we can tailor our proposal to this target (Chib, Greenberg, and Winkelmann

1998). Yet, in many cases that information will not be available.

Another widespread practice is running multiple chains which start from different

points of the space. Although this has a superficial resemblance with our idea, exploring

the space with multiple chains is in fact equivalent to an incorrect implementation of a

single SWC. Suppose for example that an investigator decides to run 100 chains each of

length 1 million, starting each chain at a random location. This is the same as running

a single chain of length 100 million where every 1 million steps one proposes a wild move

and accepts that move with probability 1. So, rather than proposing a wild move with

a certain probability, one deterministically decides when to propose a wild move and

rather than accepting the move with a certain probability, one always accepts it. These

moves violate the assumptions of a homogeneous Markov chain and hence make it unlikely

that running multiple chains produces samples from the stationary distribution unless

stationarity is reached before the first wild move, in which case the problem is easy and

both SWC and multiple chains are unnecessary. As Geyer points out (Geyer 1992; see

also http://www.stat.umn.edu/∼charlie/mcmc/one.html), if the problem is hard, then

many short chains are likely to be sampling something closer to the initial distribution from

which the starting points were chosen than the stationary distribution π(x) of interest.

Notice that the SWC accepts wild moves according to the details of the space being

explored, as it should, mainly moving between hills or sampling the heavy tails and not

returning to the flat regions. Whereas the multiple chain approach, does not make use

of any information about the space when it effectively starts the chain over, which will

typically be in a flat region. For this reason, a SWC of length N must do better at

exploring the space than m multiple chains each of length n with N = mn. The only

http://www.stat.umn.edu/~charlie/mcmc/one.html
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advantage to multiple chains is that they can be run in parallel.

A method which uses multiple chains and indeed samples from the right distribution

is the Metropolis-coupled MCMC (Geyer 1991). There, only one of the chains — the one

whose states are recorded — explores π while the others run through flattened versions

of that landscape. After every step one checks if it is worthwhile to recombine the chains.

If we used this method with only two chains, one which samples from π and one which

runs through a completely flattend landscape and if we only attempted to swap chains

every 1/p-th step, this algorithm should behave in the same way as SWC, be it at a higher

computational burden.

Another method similar to SWC results from the mixing of transition kernels (Larget

and Simon 1999). There, instead of having one expression for the Metropolis-Hastings

ratio where the proposal probabilities can be written as a mixture, one has to decide

before every step which proposal distribution to use and then only this one goes into

the Metropolis-Hastings ratio. This mixing of the transition kernels will indeed give the

same result as the mixing of the proposal distributions in the case of symmetric proposals.

However, as already mentioned above, the vital point of our approach is not the usage of a

mixture as proposal distribution, but the incidental wild jumps. A simple geometric view

may give some insight into why the small-world proposals are so effective: If we think of

the original space as the inside surface of a large sphere, then a small-world chain’s wild

proposals tie together distant regions of the sphere. Since these wild links are not static,

we get an evolving geometry in which we occasionally stretch two distant points inside the

sphere until they touch, then make our jump and let the surface snap back to its spherical

shape. While a small-world chain moves through this evolving geometry, it is more likely

to jump to another top of a hill than to jump into a valley. Therefore, the hills of the

space will behave like neighbors. In that sense, small-world proposals rearrange the space

that they are sampling.

It should be noted that this improvement was achieved in an almost automatic way.
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The only parameter that has to be set in advance is p, the probability of wild proposals

and as we have seen in Section 4.2.4 we do not need detailed knowledge of the space in

order to produce a reasonable choice of p.

We do not allege that small-world chains always perform better than any other

MCMC method, but since using small-world proposals is not more difficult than using

local proposals, we are convinced that our method can be a simple and valuable add-on

to any of the other methods. 1

1The results presented in this chapter were joint work of the author and his advisor with Roland Fleißner
and Paul Joyce when Roland was doing a Postdoc with Paul at U of I. The original publication (Guan
et al. 2006) is available at www.springerlink.com

www.springerlink.com
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Chapter 5

Markov Chain Monte Carlo Convergence Rates

5.1 Introduction and main results

Many applications of Markov chain Monte Carlo (MCMC) involve very large and/or

complex state spaces, and convergence rates are an important issue. A major problem

in MCMC is thus to find sampling schemes whose mixing times do not grow too rapidly

as the size or complexity of the space is increased. In Chapter 4, computer simulations

were used to show that such problems can be handled simply and efficiently by using an

idea from “small-world networks” (Watts and Strogatz 1998) to make a slight change in

a given proposal scheme. This change amounts to augmenting a typical local proposal

distribution with low probability long-distance jumps that effectively contract the space

and lead to much faster convergence to multi-modal target distributions. In this chapter,

we make rigorous comparisons of the convergence rates of these two types of chains.

Let π be a multi-modal probability measure on a convex set Ω ⊆ Rn. We wish to

compare convergence rates to this measure by two different Metropolis–Hastings chains

that are characterized by their proposal distributions: “local” and “small world.” From

now on, we refer to these two types of Markov chains as “local chains” and “small-world

chains,” respectively. Intuitively, a local proposal distribution is one that has thin tails, so

that the mean distance of a proposed move away from the current state is small compared

to the distances between modes; by a small-world proposal we mean a mixture of a local

proposal and a heavy-tailed proposal, so that the mean distance of a proposed move away
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from the current state is large.

In a multi-modal space, a local chain will equilibrate rapidly within a mode, but takes

a long time to move from one mode to another. Hence the entire chain converges slowly

to the target distribution. However, a small fraction of heavy-tailed proposals enables a

small world chain to move from mode to mode much more quickly. While this reduces the

efficiency of equilibrating within a mode, it is a small price to pay and easily outperforms

purely local proposals. This is the spirit of our main results. We derive bounds on the

spectral gaps for such local and small world chains and hence show how a small fraction

of heavy-tailed proposals can turn a slowly mixing chain into a rapidly mixing chain.

Throughout this chapter, we assume the state space Ω is equipped with two measures:

a reference measure, taken to be Lebesgue measure µ, and a Borel probability measure π

which serves as the target distribution. Suppose π is absolutely continuous with respect

to µ so that it admits a density π(x):

π(B) =
∫

B
π(x)µ(dx).

The most widely used Markov chain Monte Carlo method is the Metropolis–Hastings

algorithm (Metropolis et al. 1953; Hastings 1970), which we now describe briefly.

5.1.1 Metropolis–Hastings algorithm

A transition probability kernel P (x, dy) corresponds to a Metropolis–Hastings Markov

chain on Ω if it is of the form

P (x, dy) = α(x, y) k(x, y) µ(dy) + r(x) δx(dy), (5.1)

where k(x, y) is the proposal distribution and we say k(x, y) induces P (x, dy),

α(x, y) = min
(

π(y) k(y, x)
π(x) k(x, y)

, 1
)
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is the acceptance probability of a proposed move, δx is the unit point mass at x, and

r(x) =
∫

Ω
(1− α(x, y))k(x, y)µ(dy)

is the probability that the proposed move from x is rejected. It is easy to check that

the transition kernel P (x, dy) satisfies the detailed balance equation π(dx) P (x, dy) =

π(dy) P (y, dx) as measures on Ω×Ω, so that P (x, dy) is reversible with respect to π and

hence has π as its unique invariant measure. For simplicity, we consider only symmetric

proposal distributions, k(x, y) = k(|x − y|), in which case the acceptance probability

simplifies to α(x, y) = min
(

π(y)
π(x) , 1

)
.

5.1.2 Geometric ergodicity and spectral gap

Let L2(π) denote the space of (Borel) measurable, complex functions on Ω satisfying

∫
Ω
|f(x)|2π(dx) < ∞.

This is a Hilbert space with inner product 〈f, g〉 =
∫
Ω f(x)g(x)π(dx) and norm ‖f‖ =

〈f, f〉
1
2 . The Metropolis–Hastings kernel P (x, dy) induces a contraction operator P on

L2(π) given by Pf(x) =
∫
Ω f(y)P (x, dy). We say the operator P is induced by a proposal

distribution k(x, y) if the same is true of its transition kernel. P (x, dy) being reversible

with respect to π is equivalent to the operator P being self-adjoint, i.e.,

〈Pf, g〉 = 〈f, Pg〉, f, g ∈ L2(π).

It is well known that the spectrum of P is a subset of [−1, 1]. (P being self-adjoint implies

its spectrum is real, and P (x, dy) being a transition probability kernel determines the

range.)
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A chain is L2(π)-geometrically ergodic if there exists γ < 1 such that

‖µ0P
n − π‖ ≤ γn‖µ0 − π‖ (5.2)

for any non-negative integer n and any probability measure µ0 ∈ L2(π) (i.e., µ0 � π with∫
|dµ
dπ |

2dπ < ∞). Roberts and Tweedie (2001) have shown that convergence in L2 implies

convergence in “total variation” norm

‖µ1 − µ2‖tv = sup
A⊂Ω

|µ1(A)− µ2(A)| = 1
2

∫
Ω
|f1(x)− f2(x)| dx,

where fi(x) = dµi/dx.

Let L2
0(π) denote the orthogonal complement of the constant function 1 in L2(π):

L2
0(π) = {f ∈ L2(π) : 〈f,1〉 =

∫
Ω

f(x)π(dx) = 0}.

Clearly, as a subspace of L2(π), L2
0(π) is also a Hilbert space. Denote by P0 the restriction

of P to L2
0(π). Chan and Geyer (1994) proved that, for a geometrically ergodic chain,

P0 has no point spectrum (i.e., eigenvalues) of value ±1. In addition, it has been shown

(Roberts and Rosenthal 1997; Roberts and Tweedie 2001) that for reversible Markov

chains, geometric ergodicity is equivalent to the condition

‖P0‖ ≡ sup
f∈L2

0(π),‖f‖≤1

‖P0f‖ < 1, (5.3)

and any γ ∈ [‖P0‖, 1) satisfies Equation (5.2). The spectral gap of the chain P is defined

by

gap (P ) = 1− ‖P0‖.

Thus the spectral gap provides a measure of the speed of convergence of a Markov

chain to its stationary measure. Two of the main tools for studying spectral gaps in the
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setting of MCMC are conductance and Cheeger’s inequality, to which we now turn.

5.1.3 Conductance and Cheeger’s Inequality

Let P be a Markov transition kernel that is reversible with respect to π. For A ⊆ Ω

with π(A) > 0, define

hP (A) =
1

π(A)

∫
A

P (x,Ac)π(dx). (5.4)

The quantity hP (A) can be thought of as the (probability) flow out of the set A in one

step when the Markov chain is at stationary. Notice that π(dx)/π(A) is the conditional

stationary measure on the set A.

The conductance of the chain is defined by

hP = inf
0<π(A)≤1/2

hP (A). (5.5)

Note that 0 ≤ hP ≤ 1. Intuitively, small hP implies that the chain can become stuck for

a long time in some set whose measure is at most 1/2, making it difficult for the chain

to sample the rest of the distribution. As a result, such a chain converges slowly to the

stationary measure. On the other hand, a large hP implies that the chain travels around

swiftly and hence samples different parts of the distribution efficiently. As a result, such a

chain converges rapidly. Lawler and Sokal (1988) have quantified this as a generalization

of Cheeger’s inequality.

Theorem 5.1.1 (Cheeger’s Inequality). Let P be a reversible Markov transition kernel

with invariant measure π. Then

h2
P

2
≤ gap (P ) ≤ 2 hP . (5.6)

Next, suppose that a proposal distribution k(x, y) is a mixture of two proposal dis-

tributions k1(x, y) and k2(x, y). That is k(x, y) = (1 − s)k1(x, y) + s k2(x, y), for some
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0 ≤ s ≤ 1. Suppose operators P, P1, and P2 are induced by k(x, y), k1(x, y), and k2(x, y),

respectively. Clearly,

P = (1− s)P1 + s P2 (5.7)

and, for any measurable set A, hP (A) = (1 − s) hP1(A) + s hP2(A). As an immediate

consequence we have the following lemma showing that conductance acts like a concave

function on transition kernels and the spectral gap can be bounded from below by one of

the components.

Lemma 5.1.2. Suppose a reversible chain has a mixture kernel defined by (5.7). Then

the conductance of the chain satisfies hP ≥ (1− s)hP1 + s hP2 . In addition,

gap (P ) ≥ 1
2
(1− s)2 h2

P1
. (5.8)

Proof. From (5.5),

hP = inf
0<π(A)≤1/2

((1− s)hP1(A) + s hP2(A))

≥ (1− s) inf
0<π(A)≤1/2

hP1(A) + s inf
0<π(B)≤1/2

hP2(B)

= (1− s)hP1 + s hP2 ≥ (1− s)hP1 .

Combine this with Cheeger’s inequality (5.6) to get (5.8).

5.1.4 Definitions and main results

Let | · | be a norm on Ω ⊆ Rn and Br(x) the n-dimensional ball centered at x with

radius r. Denote by ∂Br(x) the surface of the ball, and write π+(∂A) for the surface

measure (relative to π) of a set A in the sense that

π+(∂A) = lim inf
ε→0

π(Aε)− π(A)
ε

,
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where Aε = {x ∈ Ω : ∃a ∈ A, |x − a| < ε} is the ε-neighborhood of A, consisting of the

union of A and its “ε-boundary” Aε \A.

The barycenter of a probability measure π is β =
∫
Ω x π(dx). We say the measure

π is log-concave if it has a density with respect to µ of the form π(x) = exp(−V (x)),

where V : Ω → (−∞,+∞] can be an arbitrary convex function. Examples of log-concave

distributions include uniform, exponential, normal, gamma, etc. For technical reasons,

we restrict our attention to “smooth” log-concave functions (but see discussion at the

end of Section (5.3)). We say a log-concave function exp(−V (x)) is α-smooth if for any

x, y, we have |V (x) − V (y)| < α |x − y|. By Borell’s theorem (Borell 1974), the tail of

π(x) is exponentially deceasing, i.e., there is a number νπ > 0, such that π+(∂Br(β)) ≤

c exp(−νπ r), for some constant c. We will refer to νπ as a decay exponent for π. Define

the first absolute centered moment of π as Mπ =
∫
Ω |x− β|π(dx).

Next, we characterize the multi-modal distributions that will serve as our target dis-

tributions. Let Ω = A1 ∪ · · · ∪ Am be a partition of state space Ω into disjoint convex

subsets. Suppose concentrated on each Ai we have a single α-smooth log-concave probabil-

ity measure πi with decay exponent νπi and barycenter βi ∈ Ai. Let dij = |βi−βj |, i 6= j,

denote the pairwise distances between barycenters. The target distribution of interest is

then defined as a mixture of these log-concave densities:

π(x) =
m∑

i=1

c πi(x)1Ai(x), (5.9)

where c is a normalization constant and 1Ai is the indicator function of Ai. When the

modes have different smoothness parameters, we take α to be the largest such.

We will refer to features of the above probability measure π that present barriers to

mixing in the local Metropolis–Hastings chain as the “complexity of the target distribu-

tion.” These include µ(Ω) (if µ(Ω) < ∞), dij , and νπj . In particular, we say a given chain

is slowly mixing in the complexity of π if the spectral gap of the chain is an exponentially
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decreasing function of at least one of these quantities. We say a chain is rapidly mixing

in the complexity of π if the spectral gap is a polynomially decreasing function of all of

these quantities.

To make our calculations concrete, we will always use for our symmetric local proposal

distribution k(x, y) a uniform distribution on an n-dimensional ball with radius δ. Such

a proposal distribution captures the essence of “local proposals” and is easier to handle

compare to other light-tailed proposals. We will sometimes refer to such a local proposal

scheme as a “δ-ball walk.”

Let h(x, y) be a heavy-tailed distribution, i.e., one for which the tails decrease polyno-

mially, instead of exponentially, on Ω. (We shall restrict ourselves to Cauchy distributions

when Ω is unbounded, and uniform distributions when Ω is compact.) A small-world

proposal distribution g(x, y) is a mixture of a local and a heavy-tailed distributions:

g(x, y) = (1− s) k(x, y) + s h(x, y), (5.10)

for some s ∈ (0, 1).

We are now ready to state our main result:

Theorem 5.1.3. Let π be the multi-modal probability measure defined by (5.9) with α-

smooth log-concave modes. Let k(x, y) be the local proposal distribution and let g(x, y)

be defined by (5.10), where h(x, y) is a heavy-tailed proposal. Then the local Metropolis–

Hastings chain is “slowly mixing” and the small-world chain is “rapidly mixing” in the

complexity of π.

The rest of the chapter is organized as follows. In the next section, we prove a new

version of the state decomposition theorem of Madras and Randall (2002). This will play

an important role in proving our main theorem. On each log-concave piece, an upper

bound on conductance is easy to obtain. However, the lower bound requires some extra

work. Thus we devote Section 5.3 to finding a lower bound through an isoperimetric
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inequality for log-concave probability measures. The proof of the main theorem is given

in Section 5.4. A discussion of possible applications of our result to convergence rates in

Metropolis-coupled Markov chain Monte Carlo will conclude the chapter.

5.2 State decomposition theorem

In this section we state and prove a new version of the state decomposition theorem

of Madras and Randall (2002). The setup of the new theorem is the same as that of

their paper, but we repeat it here for convenience. Recall that {A1, . . . , Am} is a partition

of Ω. We describe the “pieces” of a Metropolis–Hastings chain P by defining, for each

i = 1, . . . ,m, a new Markov chain on Ai that rejects any transitions of P out of Ai. The

transition kernel PAi of the new chain is given by

PAi(x,B) = P (x,B) + 1B(x)P (x,Ac
i ) for x ∈ Ai, B ⊂ Ai. (5.11)

It is easy to see that PAi is reversible on the state space Ai with respect to the measure

πi, which, by definition, is the restriction of π to the set Ai.

The movement of the original chain among the “pieces” can be modeled by a “com-

ponent” Markov chain with state space {1, . . . ,m} and transition probabilities:

PH(i, j) =
1

2 π(Ai)

∫
Ai

P (x,Aj)π(dx), for i 6= j, (5.12)

and PH(i, i) = 1 −
∑

j 6=i PH(i, j). This definition is quite similar to the definition of the

quantity hP (A) except for the 2 in the denominator. The reason for this factor will become

clear as we progress.

Our theorem is more or less a direct application of the following lemma, which is due

to Caracciolo, Pelissetto, and Sokal, and was recorded, together with its proof, in Madras
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and Randall (2002) as Theorem A.1.

Lemma 5.2.1 (Caracciolo, Pelissetto, and Sokal). In the setting stated at the beginning

of this section, assume that P (x, dy) and Q(x, dy) are transition kernels that are reversible

with respect to π. Assume further that Q is nonnegative definite and let Q
1
2 denote its

nonnegative square root. Then

gap (Q
1
2 PQ

1
2 ) ≥ gap (Q)( min

i=1,...,m
gap (PAi)), (5.13)

where

Q(i, j) =
1

π(Ai)

∫
Ai

Q(x,Aj)π(dx), for i 6= j,

and Q(i, i) = 1−
∑

j 6=i Q(i, j).

Theorem 5.2.2 (State Decomposition Theorem). In the preceding framework, as given

by equations (5.11) and (5.12), we have

gap (P ) ≥ 1
2
gap (PH)( min

i=1,...,m
gap (PAi)). (5.14)

Remark 1. The theorem says the spectral gap for the whole Metropolis–Hastings chain

can be bounded below by taking into account the mixing speed within each mode and the

mixing speed between different modes.

Proof of Theorem 5.2.2. Let Q = 1
2(I +P ), where I is the identity kernel. Reversibility of

Q with respect to π follows from the same property for P . To see that Q is a non-negative

definite (and hence can be used in Lemma 5.2.1), note first that since P is a self-adjoint

probability operator, its spectrum is a subset of [−1, 1] and hence ‖P‖ ≤ 1. Thus,

〈Qf, f〉 = 〈1
2
(I + P )f, f〉 =

1
2
(〈f, f〉+ 〈Pf, f〉) ≥ 1

2
(1− ‖P‖)‖f‖2 ≥ 0.
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Since

Q
1
2 PQ

1
2 + Q = Q

1
2 PQ

1
2 + Q

1
2 IQ

1
2 = Q

1
2 (P + I)Q

1
2 = Q

1
2 (2Q)Q

1
2 = 2 Q2,

it follows that

Q
1
2 PQ

1
2 = 2Q2 −Q = Q(2Q− I) = QP.

Furthermore, setting γ = ‖P0‖, we have gap (P ) = 1− γ and, as a simple consequence of

the spectral mapping theorem, gap (QP ) = 1−(1/2)γ(1+γ). Thus 2gap (P )−gap (QP ) =

2(1− γ)− (1− (1/2)γ(1 + γ)) = (1− γ)(1− γ/2) > 0, and hence

gap (P ) >
1
2
gap (QP ) =

1
2

gap (Q
1
2 PQ

1
2 ). (5.15)

Following the definition in Lemma 5.2.1, we have

Q(i, j) =

∫
Ai

Q(x, Aj)π(dx)

π(Ai)
=

∫
Ai

(I(x,Aj) + P (x,Aj))π(dx)

2 π(Ai)
=

∫
Ai

P (x, Aj)π(dx)

2 π(Ai)
,

(5.16)

which is just PH(i, j).

Combine Equations (5.12), (5.13), and (5.15) to finish the proof.

The same result has been obtained in Martin and Randall (2000). However, their

proof was not applicable in the general situation for which P is not non-negative definite.

There is, of course, a resemblance between our state decomposition theorem and that

of Madras and Randall (2002). We note that, firstly, our conclusion appears to be a bit

stronger than theirs in that our result does not depend on the number of overlapping

“pieces”; secondly and more importantly, in the original theorem the connection between

different “pieces” of the state space is made via overlapping of the different “pieces”.

Jarner and Yuen (2004) have applied the original theorem to estimate the convergence

rates of 1-dimensional local chains. Unfortunately, the original theorem is not readily
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applicable to small-world chains because such chains can move from one region to another

even when the two regions are not overlapping. On the other hand, in our theorem the

connection between different “pieces” is made via the “probability flow” from one region to

another. We emphasize that having a chain that jumps from one region to another without

visiting the valleys in between is the key to sampling a multi-modal space efficiently. This

is discussed in Chapter 4.

5.3 Lower bound for conductance

To apply the state decomposition theorem to a multi-modal probability measure

defined by (5.9), we need a lower bound on the conductance (hence spectral gap) for each

log-concave piece of the distribution. For this, we use an isoperimetric inequality.

The idea of using an isoperimetric inequality for log-concave probability measures to

obtain a lower bound on the conductance of local chains is rather straightforward and

has been used by many authors, including Applegate and Kannan (1990), Kannan and

Li (1996), and Lovász and Vempala (2003a). Isoperimetric inequalities for log-concave

probability measures have been studied by Bobkov (1999) and Kannan, Lovász, and Si-

monovits (1995). As noted by Bobkov, although the result presented in Kannan, Lovász,

and Simonovits (1995) was for a uniform measure on a convex set, their method in fact

extends naturally to general log-concave probability measures. The isoperimetric inequal-

ity in Kannan, Lovász, and Simonovits (1995) was studied using a “localization lemma”

developed by Lovász and Simonovits (1993) which essentially reduces integral inequalities

in an n-dimensional space to integral inequalities in a single variable. The original form

of the result, applied to uniform measures, is the following, recorded as Theorem 5.2 in

Kannan, Lovász, and Simonovits (1995).

Theorem 5.3.1 (Kannan, Lovasz, and Simonovits). Let K be a convex set and K =

K1 ∪K2 ∪K3 a partition of K into three measurable sets such that the distance between
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K1 and K2 is d(K1,K2) > 0. Let b = 1
vol(K)

∫
K x dx be the barycenter of K and M1(K) =∫

K |x− b| dx. Then

vol(K3)vol(K) ≥ ln 2
M1(K)

d(K1,K2)vol(K1)vol(K2).

The following is the log-concave version of the above isoperimetric inequality. See

also Lovász and Vempala (2003b, Theorem 2.4).

Theorem 5.3.2. Suppose π is a log-concave probability measure on a convex set K. Sup-

pose further that π has barycenter 0 and set Mπ =
∫
K |x| π(dx). Let K = K1 ∪ K2 ∪ B

be a partition of K into three measurable sets such that the distance between K1,K2

d(K1,K2) > 0. Then

π(B) ≥ ln 2
Mπ

d(K1,K2) π(K1) π(K2).

As remarked above, the proof of Theorem 5.3.1 in Kannan, Lovász, and Simonovits

(1995) extends to Theorem 5.3.2 via the “localization lemma” on log-concave probability

measures (Kannan, Lovász, and Simonovits 1995, Theorem 2.7).

The next lemma makes the connection between Euclidean distance between two points

and the total variation distance between the one-step Markov transition kernels starting

from those two points. Both the idea and the proof are borrowed from Lovász and Vempala

(2003b).

Lemma 5.3.3. Let K ⊂ Rn be concave and suppose u, v ∈ K satisfy |u − v| < δ
8
√

n
,

for some δ > 0. Suppose further that P (x, dy) is a Metropolis–Hastings transition kernel

induced by a δ-ball local proposal and having an α-smooth log-concave target distribution

π on K. Then

‖P (u, ·)− P (v, ·)‖tv ≤ 1− 1
2
e−α δ.

Proof. Let Bδ(u) and Bδ(v) be the balls of radius δ around u and v, respectively. Write

vol(Bδ) for their Euclidean volume and set C = Bδ(u) ∩ Bδ(v). Since |u − v| < δ
8
√

n
,
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we have vol(C) > 1
2vol(Bδ). Since our target distribution is an α-smooth log-concave

function, the Hastings ratio is of the form

π(y)
π(x)

= e−|V (x)−V (y)| ≥ e−α|x−y|.

Thus, for any point x ∈ C, the probability density for an accepted δ-ball move from u to

x is at least 1
vol(Bδ)e

−α δ; similarly for an accepted move from v to x. Thus, computing

the total variation distance as 1 minus the “overlapping area,” we have

‖P (u, ·)− P (v, ·)‖tv ≤ 1− 1
vol(Bδ))

∫
C

e−α δµ(dx) = 1− 1
2
e−α δ.

Theorem 5.3.4. Suppose π is an α-smooth log-concave probability measure on a convex

set K. Suppose further that π has barycenter 0 and set Mπ =
∫
K |x| π(dx). Then the

conductance, hP , of the Metropolis–Hastings chain with transition kernel P (x, dy) induced

by the uniform δ-ball proposal satisfies

hP ≥ δ e−α δ

512
√

n Mπ
,

provided δ is small compared to 1/Mπ.

Proof of Theorem 5.3.4. Let K = S1 ∪ S2, where S1 and S2 are disjoint and measurable.

We begin by proving that

∫
S1

P (x, S2) π(dx) ≥ δ e−α δ

512
√

n Mπ
min (π(S1), π(S2)). (5.17)

It is easy to see that

∫
S1

P (x, S2)π(dx) =
∫

S2

P (x, S1)π(dx).
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Now consider subsets that are “deep” inside S1 and S2, in the sense that the Metropolis–

Hastings chain is unlikely to move out of them in one step:

S′1 =
{

x ∈ S1 : P (x, S2) <
1
4
e−α δ

}

and

S′2 =
{

x ∈ S2 : P (x, S1) <
1
4
e−α δ

}
.

First consider the case π(S′1) < π(S1)/2. Then

∫
S1

P (x, S2)π(dx) ≥ 1
4
e−α δπ(S1 \ S′1) >

1
8
e−α δπ(S1),

which proves (5.17) provided we choose δ small enough compared to 1/Mπ.

So we can assume that π(S′1) ≥ π(S1)/2 and, by the same reasoning, π(S′2) ≥ π(S2)/2.

Then, for any x ∈ S′1 and y ∈ S′2,

‖P (x, ·)− P (y, ·)‖tv ≥ |P (x, S1)− P (y, S1)| ≥ 1− P (x, S2)− P (y, S1) > 1− 1
2
e−α δ.

Applying Lemma 5.3.3, we obtain for any x ∈ S′1 and y ∈ S′2 that

|x− y| ≥ δ

8
√

n
,

and hence d(S′1, S
′
2) ≥ δ

8
√

n
. Set B = K \ {S′1 ∪ S′2} and apply Theorem 5.3.2 to the

partition K = S′1 ∪ S′2 ∪B to get

π(B) ≥ δ

16
√

n Mπ
π(S1)π(S2).
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It follows that∫
S1

P (x, S2)π(dx) =
1
2

∫
S1

P (x, S2)π(dx) +
1
2

∫
S2

P (x, S1)π(dx)

≥ 1
16

π(B)e−α δ

≥ δ e−α δ

256
√

n Mπ
π(S1)π(S2),

(5.18)

in agreement with (5.17) since π(S1)π(S2) ≥ min (π(S1), π(S2))/2. (Note that the first

inequality above holds because we may assume π(B ∩S1) ≥ π(B)/2 by symmetry, and on

B ∩ S1 we have P (x, S2) ≥ 1
4e−α δ.)

Thus we have verified (5.17). To finish the proof of the theorem, just notice that

(5.17) implies, for every set S1 satisfying π(S1) ≤ 1/2 (and hence π(S2) ≥ 1/2), that

1
π(S1)

∫
S1

P (x, S2)π(dx) ≥ δ e−α δ

512
√

n Mπ
,

and hence

hP = inf
0<π(A)≤1/2

hP (A) ≥ δ e−α δ

512
√

n Mπ
.

Remark 2. We have freedom in choosing δ. The optimal δ (for the lower bound on

conductance) is δ = 1/α. With this choice, we have

hP ≥ 1
512 e

√
n Mπ α

.

This choice of δ makes sense. Imagine, for example, a chain starting at the apex of a

1-dimensional two-sided exponential density e−α|x|, with α large. A large value of δ causes

proposed moves to be rejected most of the time, resulting in slower mixing. However, a

chain with small δ has a reasonably large chance of moving away from the apex, and hence

mixes faster.
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In recent work, Lovász and Vempala (2003b) were able to demonstrate fast conver-

gence when sampling a log-concave distribution without the “smoothness” assumption.

The technique they used was, loosely, to “smooth out” the distribution by convolving the

log-concave density with a uniform distribution of small variance. It is interesting to put

their idea into a probability context. Suppose X and Y are two random variables such

that X has a log-concave density, f(x). Suppose the probability density of Y is smooth

and log-concave, with E[Y ] = 0 and Var(Y ) small. Then the sum of these two random

variables, Z = X + Y , has a density, g(x), given by the convolution of two log-concave

densities, and hence is also log-concave (Leindler 1972; Prékopa 1973). Intuitively, these

two densities f(x) and g(x) should be close to each other if Var(Y ) is sufficiently small,

and g(x) is smoother than f(x) on the scale of the
√

Var(Y ). Y can be interpreted as a

small perturbation and this perturbation determines, in a way, how close a chain can get

to the target distribution (if one leaves out the smoothness assumption on density of X).

The result of Lovász and Vempala (2003b), in a paraphrased form, says that

||µ0P
n − π|| ≤ Mε + γn

ε ||µ0 − π||, (5.19)

where µ0 is the starting measure, P is the Markov operator with target measure π, ε is

a small term that determines the accuracy of the algorithm, M is a constant, and γε is

the convergence rate that is determined by ε. In fact, γε = 1 − Φ2
ε/2, where Φε is the

ε-conductance defined by supε<π(A)≤1/2

R
A P (x,Ac)π(dx)

π(A)−ε . They were able to show that the

ε-conductance can be bounded below by a quadratic function of ε.

In summary, if one ignores sets of small measure for a log-concave target density, a

Metropolis–Hastings chain induced by a ball walk (even without the smoothness assump-

tion on the target) is “geometrically ergodic.” We would like to have directly applied this

nice result, but we chose not to for two reasons. First, the state decomposition theo-

rem applies in the context of spectral gap, while strictly speaking, Equation (5.19) does
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not give geometric ergodicity, and hence it can not be applied directly in the state de-

composition theorem. Secondly, if one chooses to cut off small sets, then all log-concave

densities that decay faster than an exponential essentially have compact supports, and

hence are “smooth.” So the results in this section apply. We note here, however, that

both Lemma 5.3.3 and Theorem 5.3.4 are borrowed from Lovász and Vempala (2003a)

with some modifications to apply arguments on conductance instead of ε-conductance.

5.4 Proof of the main theorem

5.4.1 A 1-D example

To gain some insight into the role of the complexity of the target distribution and the

idea behind the proof of Theorem 5.1.3, we begin with a simple 1-dimensional example in

which Ω is a circle with perimeter 4L for some L � 1; i.e., the interval [−2L, 2L] with the

two ends connected. Consider a two-mode target distribution

π(x) =


c ν e−ν |x| if x ∈ [−L,L],

c ν e−ν (2L−|x|) if x ∈ [−2L,−L] ∪ [L, 2L],
(5.20)

where c is the normalization constant. Here, we can think of L and ν as determining

the complexity of the target distribution; increasing ν makes the modes more narrow,

and increasing L increases the size of the space and places the modes further apart. We

denote by π1 the piece of π defined on [−L,L] and by π2 the other piece. We take for the

local proposal the uniform distribution k(x, y) = 2/δ for y ∈ [x−δ, x+δ] and 0 otherwise.

Let Pk(x, dy) be the transition kernel for the Metropolis–Hastings chain based on this

local proposal and having target distribution π. Consider the partition A = [−L,L],

Ac = [−2L,−L] ∪ [L, 2L]. Then

hPk
≤ hPk

(A) <
2

π(A)

∫ L

L−δ
Pk(x,Ac)π(dx) < 2c e−ν (L−δ).
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By Cheeger’s inequality, we get

gap (Pk) ≤ 2hPk
≤ 4c e−ν (L−δ). (5.21)

Thus, the spectral gap for the local Metropolis–Hastings chain decreases exponentially in

L and ν, finishing the first part of our proof for this example.

Now consider a heavy-tailed proposal distribution h(x, y) = 1/4L, i.e., a uniform

distribution on Ω, and the small world proposal g(x, y) = (1 − s)k(x, y) + s h(x, y). Let

Pg,A(x, dy) be the transition kernel for the small-world chain that is restricted to the set

A. Then Pg,A(x, dy) = (1 − s)Pk,A(x, dy) + s Ph,A(x, dy), where Pk,A and Ph,A are the

restrictions to A of the kernels induced by k(x, y) and h(x, y), respectively. By (5.8),

we have hPg,A
≥ (1 − s)hPk,A

. It is easy to check that, for the two-sided exponential

distribution, Mπ = 1/ν. Then by Theorem 5.3.4,

hPk,A
≥ δ ν e−ν δ

512
.

By Cheeger’s inequality, we have

gap (Pg,A) ≥
h2

Pg,A

2
≥ δ2 ν2e−2 ν δ

219
(1− s)2. (5.22)

By symmetry, the small-world chain that is restricted to Ac has the same lower bound for

its spectral gap.

Also, by symmetry, the matrix of transition probabilities for the component chain

has the form PH =
(

1−a a
a 1−a

)
. The spectral gap for this matrix is gap (PH) = 2a. Now
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we calculate a = PH(1, 2). Set I =
∫ L
0 ν e−ν x dx. Then π(A) = 2 c I. By (5.12) we have

PH(1, 2) =

∫
A Pg(x, Ac)π(dx)

2 π(A)
>

1
4 c I

s

4L

∫
A

∫
Ac

min(π(y), π(x))dydx

=
1

4 c I

c s ν

L

∫ L

0

∫ L

0
min

(
e−νx, e−νy

)
dy dx

=
s ν

4 I L

∫ L

0

(∫ x

0
+
∫ L

x

)
min

(
e−νx, e−νy

)
dy dx

=
s

2 I ν L
(1− e−νL − νLe−νL).

(5.23)

When νL ≥ 2, this yields PH(1, 2) > s/(4 ν L). Note that instead of just using the fact

that 2π(A) = 1, we chose to do the calculation the “hard” way in order to show that the

normalization constant c has no effect on the spectral gap. Using the state decomposition

theorem to combine (5.22) and (5.23) we have

gap (Pg) >
s(1− s)2 δ2 ν e−2 ν δ

221L
, for ν L ≥ 2. (5.24)

Setting δ = 1/ν in Equation (5.24) leads to

gap (Pg) >
s(1− s)2 e−2

221 ν L
, for ν L ≥ 2.

For a small world chain, the lower bound on the spectral gap decreases linearly with

both L and ν. Moreover, the quantity 1/ν determines the absolute “size” of a mode, and

hence 1/(ν L) reflects the relative size of each mode. Thus, we can see how the spectral

gap is influenced by the relative size of each mode.

We have freedom in the choice of the value s. It is clear that s = 0 corresponds to a

pure local chain and s = 1 corresponds to the rejection method. Either case will make the

right side of (5.24) equal to 0, which either implies the lower bound is too rough, or the

chain is slowly mixing. Note that, in the lower bound, the best value for s is 1/3, which

maximizes s (1− s)2.
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Using a uniform distribution for h(x, y) does not make sense in an unbounded space.

However, this is not a problem because we can always use, say, a Cauchy distribution

h(x) = 1
π

b
x2+b2

, where b is the half width at half maximum. Some prior knowledge about

the target distribution will help in choosing b in a way that increases the lower bound on

the spectral gap, and hence the convergence rate of the corresponding small-world chain.

Even in a bounded space, the use of a Cauchy distribution, instead of a uniform, may

increase the convergence rate in cases for which most of the mass is accumulated in a

small portion of the state space.

5.4.2 The general case

Proof of Theorem 5.1.3. The proof of the general case is similar in spirit to the one-

dimensional case. For the first part of the theorem we want to show that, under a local

proposal, the spectral gap is exponentially small. It is sufficient to prove that the one-step

probability flow going out of at least one mode is exponentially small. Among all m pieces

of the partition, at least one piece has measure no bigger than 1/2. Without loss of gen-

erality, suppose it is A1. Consider any radius L > 0 such that B = BL(β1) ⊂ A1 where β1

is the barycenter of π1. Let Pk be the operator induced by a local proposal k(x, y) given

by a δ-ball walk. Then

hPk
≤ hPk

(B) =
1

π1(B)

∫
B

Pk(x,Bc) π(dx) =
1

π1(B)

∫
B

∫
Bc

π(x) k(x, y) µ(dy) µ(dx)

≤ 1
π1(B)

∫ L

L−δ
π+

1 (∂Bu(β1)) du

≤ 1
π1(B)

∫ L

L−δ
e−ν1 u du

≤ 1
π1(B) ν1

e−ν1(L−δ)

where the second inequality follows the fact
∫
Bc k(x, y) µ(dy) ≤ 1, and we have written ν1

for the decay exponent of π1.
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By Cheeger’s inequality, we have

gap (Pk) ≤ 2hPk
≤ 2

π1(B) ν1
e−ν1(L−δ),

and this finishes the first part of the proof.

To prove the second part of the theorem, let Pg = (1 − s)Pk + s Ph be the small

world operator, where Pk and Ph are induced by the local proposal k(x, y) and the heavy-

tailed proposal h(x, y), respectively. Let Pg,Aj be the restriction of the operator Pg on

the set Aj , and Pk,Aj
, Ph,Aj

be the restrictions of Pk, Ph to Aj , respectively. We have

Pg,Aj = (1− s)Pk,Aj
+ s Ph,Aj

.

By Theorem 5.3.4 and Mπj ≤ c/νj , we have

hPg,Aj
≥ νj δ e−νj δ

512 c
√

n
(1− s)

and hence Cheeger’s inequality implies

gap (Pg,Aj ) ≥
ν2

j δ2 e−2 νj δ

219 c2 n
(1− s)2. (5.25)

Next we want to calculate PH(i, j). Let b = maxi6=j |βi − βj | denote the maximum

of the pairwise distances between barycenters. Let the heavy-tailed distribution be an

n-dimensional Cauchy distribution with half width b:

h(x, y) =
cn b

(|y − x|2 + b2)
n+1

2

,

where cn = π(n+1)/2/Γ(n+1
2 ) is the normalization constant–a function of the dimension n.

On each partition piece Ai pick a ball Bi = BRi(βi) ⊂ Ai such that π(Bi) = 2
3 π(Ai).

Let hi = infx∈∂Bi
π(x), the “height” of the density πi along the boundary of Bi. Let

Bc
i = Ai \ Bi be the complement of Bi on the set Ai and set cij = min(hi/hj , hj/hi).
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Then

I ≡
∫

Ai

∫
Aj

h(x, y) min(π(y), π(x))µ(dx) µ(dy)

>

∫
Bc

i

∫
Bj

h(x, y)min(π(y), π(x))µ(dx)µ(dy) +
∫

Bi

∫
Bc

j

h(x, y)min(π(y), π(x))µ(dx)µ(dy)

>

∫
Bc

i

∫
Bj

h(x, y)π(x)min(
hi

hj
, 1)µ(dx)µ(dy) +

∫
Bi

∫
Bc

j

h(x, y)π(y)min(
hj

hi
, 1)µ(dx)µ(dy)

> cij

∫
Bc

i

∫
Bj

π(x) h(x, y) µ(dx) µ(dy) + cij

∫
Bc

j

∫
Bi

π(y) h(x, y) µ(dy) µ(dx).

Since h(x, y) = h(|x−y|) = h(r) decreases polynomially, while both π(x) and π(y) decrease

exponentially, there exists a ball B̂w with radius wb such that πi(B̂w) > 5
6πi(Ai), πj(B̂w) >

5
6πj(Aj), and infr∈B̂w

h(r) = ε/cn, where ε = ε(wb) is polynomially small in wb. Note that

πi(Bi) = 2
3πi(Ai) and πi(Bj) = 2

3πj(Aj), so

I > cij

∫
Bc

i∩B̂w

∫
Bj

π(x)
ε

cn
µ(dx) µ(dy) + cij

∫
Bc

j∩B̂w

∫
Bi

π(y)
ε

cn
µ(dy) µ(dx)

>
cijε

cn

(
1
6
π(Ai) vol(Bj) +

1
6
π(Aj) vol(Bi)

)
.

(5.26)

From (5.12) and (5.26) we get

PH(i, j) =

∫
Ai

Pg(x,Aj)π(dx)

2 π(Ai)
>

s

2 π(Ai)
I

>
s

2 π(Ai)
cijε

cn

(
1
6
π(Ai) vol(Bj) +

1
6
π(Aj) vol(Bi)

)
>

s cij εwb

12 cn
vol(Bj).

(5.27)

For an m × m stochastic matrix A = (aij), the spectral gap can be bounded from

below by Proposition 3.2 in (Peña 2005):

gap (A) ≥ m min
i6=j

aij .
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Combining this with (5.27) results in

gap (PH) ≥ sm εwb

12 cn
min
i6=j

(cijvol(Bj)). (5.28)

Using the state decomposition theorem to put (5.25) and (5.28) together, we get

gap (Pg) ≥ s(1− s)2
m εwb δ2

224 c2 n cn
min

j
(ν2

j e−2 νj δ) min
i6=j

(cijvol(Bj)). (5.29)

Setting δ = 1/ maxj (νj) yields

gap (Pg) > s(1− s)2
m εwb

224 c2 e2 n cn
min
i6=j

(cijvol(Bj)).

Notice that vol(Bj) decreases polynomially with increase of νj . This concludes the proof.

Remark 3. In the proof, we essentially used a uniform distribution on a bounded set

as a heavy-tailed distribution. Notice that, loosely, εwbvol(Bj)/cn determines the relative

size of mode j. In our lower bound as shown in (5.29), we have the so-called “curse of

dimensionality”: cn decreases exponentially with increase of dimension n. Interestingly,

the best value for s is still 1/3.

5.5 Metropolis-coupled MCMC and simulated tempering

Metropolis-coupled MCMC (MCMCMC), proposed by Geyer (1991), shares the same

spirit as “simulated tempering,” which was independently proposed by Marinari and Parisi

(1992). Both are based on an analogy with simulated annealing (Kirkpatrick, Gelatt, and

Vecchi 1983), which is an optimization algorithm rather than a sampling scheme. It

provides the useful metaphor of using some help from a “heated” version of the problem

that makes valley crossing easier by flattening the state space, to obtain the result in



96

the original “cooled” version of the problem one is interested in. Simulated annealing

uses a specific form of “heating” that is sometimes called “powering up.” If h1(x) is

the unnormalized density for the distribution of interest, ht(x) = h1(x)1/t, for t > 1,

are the heated unnormalized densities, including perhaps t = ∞ which gives π(x) = 1.

However, as noted by Geyer and Thompson (1995), “powering up” is not an essential part

of simulated tempering or of MCMCMC, and a different form of heating may work better

in a specific real application.

Let T = {1, . . . , t}. Both MCMCMC and simulated tempering simulate a sequence

of t distributions specified by unnormalized densities hi(x) (i ∈ T ) on the same sample

space Ω, where the index i is called the “temperature,” h1(x) is the “cold” distribution,

and ht(x) is the “hot” distribution. In fact, an MCMCMC chain lives in a product

state space Ω × T such that, for a given i ∈ T , the chain updates itself on Ω using a

Metropolis–Hastings algorithm. For the move between different “temperatures,” one keeps

the x ∈ Ω and only updates the “temperature.” Specifically, suppose a(i) (i = 1, . . . , t)

is the auxiliary probability distribution for the temperatures. Then one iteration of the

“Metropolis-Hastings” version of the simulated tempering algorithm is as follow (Geyer

and Thompson 1995):

1. Update x using a Metropolis-Hastings update for hi.

2. Set j = i ± 1 according to probabilities qi,j , where q1,2 = qm,m−1 = 1 and qi,i+1 =

qi,i−1 = 1/2 if 1 < i < m (i.e., reflecting random walk on different temperatures).

3. Calculate the Hastings ratio

r =
hj(x)a(j)qj,i

hi(x)a(i)qi,j

and accept the transition (set i to j) or reject it according to the Metropolis rule:

accept with probability min(r, 1).

An implicit assumption in the simulated tempering algorithm is that, at each tem-

perature, the proposal distribution that is used to generate a new move x ∈ Ω is lo-
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cal. For the sake of simplicity and clarity, let us assume that we have two tempera-

tures, hot and cool, a(1) = a(2) = 1/2 and q1,2 = q2,1 = 1. Then r in step 3 becomes

hj(x)/hi(x), for i, j ∈ {1, 2}. Suppose now that the chain is at high temperature, h2(x).

If x is in a mode, then h1(x)/h2(x) is close to 1 (by powering up), so that the chain is

likely to jump back to the cool state and collect samples. On the other hand, if x is in a

valley, h1(x)/h2(x) is small, so that the chain tends to stay at the hot temperature. When

the hot chain has wandered far enough and proposes a move back to a cool temperature, it

in fact proposes a move to the cool chain that is on average far away (as compared to the

local proposal) from the state (in Ω) where the chain last visits the cool temperature. In

summary, if one is only interested in the samples collected in cool state (i.e., the original

distribution), then the only purpose of the hot state is to provide a far away proposal

for the cool chain. This is the exact spirit of the occasional heavy-tailed proposals in the

small-world chain.

We note, however, that although simulated tempering, or MCMCMC, is a way to

generate heavy-tailed proposals to overcome bottlenecks in Ω, the computational cost

is heavy–much heavier than for a small-world chain. Moreover, it has been shown by

Bhatnagar and Randall (2004) that, in certain situations, the transition between different

temperatures can have bottlenecks, which will slow down the frequency of “heavy-tailed”

proposals, and hence slow down the overall convergence.

Nonetheless, if one can rule out the possible bottlenecks in transitions between the

hot chain and the cool chian, our Theorem 5.1.3 for small-world chains readily applies to

MCMCMC, or simulated tempering, to show that both of them are “rapidly mixing.”

Note that the different temperatures in simulated tempering in fact correspond to

different amounts of heaviness of the tail in a small-world chain. Particularly, when Ω is

compact, t = ∞ corresponds to the heavy-tailed proposal being a uniform distribution.

Therefore, we propose that a promising scheme for using Markov chain Monte Carlo

methods to solve hard problems would be to run multiple small-world chains in parallel
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with different chains having different heaviness of tails; for example, using different half-

widths in Cauchy distributions, then coupling different chains via the Hastings ratio and

Metropolis rule.
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A Brief Outlook

In genome science, the three different parts of this dissertation may find a common

playground. Furthermore, these interactions may happen on two different scales.

On a macroscopic scale, genomic projects (including human and other mammals)

collect data from different geographical regions, so that a spatial population genetics model

is required to draw meaningful conclusions from data. The inference of model parameters

requires building phylogenetic (when data cross species) and/or coalescent (when data are

from within a species) trees. Distance methods have a critical speed advantage over others

when handling large data sets. The inference also requires one to sample the parameter

space (including tree space), where Markov Chain Monte Carlo has played a dominant

role.

On a microscopic scale, evolutionarily relevant parameters, for example, mutation

and recombination rates, tend to have local dependence. Interacting particle systems

could be a capable tool for modeling such dependence. On the other hand, the inference

of recombination hotspots involves sampling ancestral recombination graphs, where a fast

mixing MCMC algorithm is critical. Meanwhile, at each locus, an ancestral recombination

graph breaks into trees. And distance methods could ease the computation, especially

when data grows at a faster rate than Moore’s Law.
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